题意:
若$a_1+a_2+cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数
思路:
设$lcm(a_i)=x$,
由唯一分解定理,$x=p_1^{m_1}+p_2^{m_2}+cdots+p_{tot}^{m_{tot}}$
设$b_i=p_i^{m_i}$,
则能组成x的和最小的数为$sum p_i^{m_i}$
所以只要$sum p_i^{m_i}leq n$即可,
其中小于的时候,剩余补1即可
dp[i][j]表示选了前i个素数,他们的和为j时的方法数
代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<string> #include<stack> #include<queue> #include<deque> #include<set> #include<vector> #include<map> #include<functional> #define fst first #define sc second #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define lson l,mid,root<<1 #define rson mid+1,r,root<<1|1 #define lc root<<1 #define rc root<<1|1 #define lowbit(x) ((x)&(-x)) using namespace std; typedef double db; typedef long double ldb; typedef long long ll; typedef unsigned long long ull; typedef pair<int,int> PI; typedef pair<ll,ll> PLL; const db eps = 1e-6; const int mod = 1e9+7; const int maxn = 2e3+100; const int maxm = 2e6+100; const int inf = 0x3f3f3f3f; const db pi = acos(-1.0); int n, tot; int prime[1000 + 10]; int vis[1000 + 10]; ll ans, dp[1000 +10][1000 + 10]; int main(){ scanf("%d", &n); tot = 0; for(int i = 2; i <= 1000; i++){ if(!vis[i])prime[++tot] = i; for(int j = 1; j <= tot && i *prime[j] <= 1000; j++){ vis[i*prime[j]] = 1; if(i%prime[j]==0)break; } } dp[0][0] = 1; for(int i = 1; i <= tot; i++){ for(int j = 0; j <= n; j++)dp[i][j] = dp[i-1][j]; for(int j = prime[i]; j <= n; j *= prime[i]){ for(int k = 0; k + j <= n; k++){ dp[i][k+j] += dp[i-1][k]; } } } ans = 0; for(int i = 0; i <= n; i++)ans+=dp[tot][i]; printf("%lld", ans); return 0; }