zoukankan      html  css  js  c++  java
  • Python实现ID3(信息增益)

    Python实现ID3(信息增益)

    运行环境

    • Pyhton3
    • treePlotter模块(画图所需,不画图可不必)
    • matplotlib(如果使用上面的模块必须)

    计算过程

    st=>start: 开始
    e=>end
    op1=>operation: 读入数据
    op2=>operation: 格式化数据
    cond=>condition: 是否建树完成
    su=>subroutine: 递归建树
    op3=>operation: 选择熵最大的为判决点
    op4=>operation: 测试判决情况
    op5=>operation: 划分为判决节点子树
    
    st->op1->op2->cond
    cond(no)->su->op5->op3->su
    cond(yes)->op4->e
    

    输入样例

    /* Dataset.txt */
    训练集:
    
        outlook    temperature    humidity    windy 
        ---------------------------------------------------------
        sunny       hot            high         false         N
        sunny       hot            high         true          N
        overcast    hot            high         false         Y
        rain        mild           high         false         Y
        rain        cool           normal       false         Y
        rain        cool           normal       true          N
        overcast    cool           normal       true          Y
    
    测试集
        outlook    temperature    humidity    windy 
        ---------------------------------------------------------
        sunny       mild           high         false          
        sunny       cool           normal       false         
        rain        mild           normal       false        
        sunny       mild           normal       true          
        overcast    mild           high         true          
        overcast    hot            normal       false         
        rain        mild           high         true         
    

    代码实现

    # -*- coding: utf-8 -*-
    __author__ = 'Wsine'
    
    from math import log
    import operator
    import treePlotter
    
    def calcShannonEnt(dataSet):
    	"""
    	输入:数据集
    	输出:数据集的香农熵
    	描述:计算给定数据集的香农熵
    	"""
    	numEntries = len(dataSet)
    	labelCounts = {}
    	for featVec in dataSet:
    		currentLabel = featVec[-1]
    		if currentLabel not in labelCounts.keys():
    			labelCounts[currentLabel] = 0
    		labelCounts[currentLabel] += 1
    	shannonEnt = 0.0
    	for key in labelCounts:
    		prob = float(labelCounts[key])/numEntries
    		shannonEnt -= prob * log(prob, 2)
    	return shannonEnt
    
    def splitDataSet(dataSet, axis, value):
    	"""
    	输入:数据集,选择维度,选择值
    	输出:划分数据集
    	描述:按照给定特征划分数据集;去除选择维度中等于选择值的项
    	"""
    	retDataSet = []
    	for featVec in dataSet:
    		if featVec[axis] == value:
    			reduceFeatVec = featVec[:axis]
    			reduceFeatVec.extend(featVec[axis+1:])
    			retDataSet.append(reduceFeatVec)
    	return retDataSet
    
    def chooseBestFeatureToSplit(dataSet):
    	"""
    	输入:数据集
    	输出:最好的划分维度
    	描述:选择最好的数据集划分维度
    	"""
    	numFeatures = len(dataSet[0]) - 1
    	baseEntropy = calcShannonEnt(dataSet)
    	bestInfoGain = 0.0
    	bestFeature = -1
    	for i in range(numFeatures):
    		featList = [example[i] for example in dataSet]
    		uniqueVals = set(featList)
    		newEntropy = 0.0
    		for value in uniqueVals:
    			subDataSet = splitDataSet(dataSet, i, value)
    			prob = len(subDataSet)/float(len(dataSet))
    			newEntropy += prob * calcShannonEnt(subDataSet)
    		infoGain = baseEntropy - newEntropy
    		if (infoGain > bestInfoGain):
    			bestInfoGain = infoGain
    			bestFeature = i
    	return bestFeature
    
    def majorityCnt(classList):
    	"""
    	输入:分类类别列表
    	输出:子节点的分类
    	描述:数据集已经处理了所有属性,但是类标签依然不是唯一的,
    		  采用多数判决的方法决定该子节点的分类
    	"""
    	classCount = {}
    	for vote in classList:
    		if vote not in classCount.keys():
    			classCount[vote] = 0
    		classCount[vote] += 1
    	sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reversed=True)
    	return sortedClassCount[0][0]
    
    def createTree(dataSet, labels):
    	"""
    	输入:数据集,特征标签
    	输出:决策树
    	描述:递归构建决策树,利用上述的函数
    	"""
    	classList = [example[-1] for example in dataSet]
    	if classList.count(classList[0]) == len(classList):
    		# 类别完全相同,停止划分
    		return classList[0]
    	if len(dataSet[0]) == 1:
    		# 遍历完所有特征时返回出现次数最多的
    		return majorityCnt(classList)
    	bestFeat = chooseBestFeatureToSplit(dataSet)
    	bestFeatLabel = labels[bestFeat]
    	myTree = {bestFeatLabel:{}}
    	del(labels[bestFeat])
    	# 得到列表包括节点所有的属性值
    	featValues = [example[bestFeat] for example in dataSet]
    	uniqueVals = set(featValues)
    	for value in uniqueVals:
    		subLabels = labels[:]
    		myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    	return myTree
    
    def classify(inputTree, featLabels, testVec):
    	"""
    	输入:决策树,分类标签,测试数据
    	输出:决策结果
    	描述:跑决策树
    	"""
    	firstStr = list(inputTree.keys())[0]
    	secondDict = inputTree[firstStr]
    	featIndex = featLabels.index(firstStr)
    	for key in secondDict.keys():
    		if testVec[featIndex] == key:
    			if type(secondDict[key]).__name__ == 'dict':
    				classLabel = classify(secondDict[key], featLabels, testVec)
    			else:
    				classLabel = secondDict[key]
    	return classLabel
    
    def classifyAll(inputTree, featLabels, testDataSet):
    	"""
    	输入:决策树,分类标签,测试数据集
    	输出:决策结果
    	描述:跑决策树
    	"""
    	classLabelAll = []
    	for testVec in testDataSet:
    		classLabelAll.append(classify(inputTree, featLabels, testVec))
    	return classLabelAll
    
    def storeTree(inputTree, filename):
    	"""
    	输入:决策树,保存文件路径
    	输出:
    	描述:保存决策树到文件
    	"""
    	import pickle
    	fw = open(filename, 'wb')
    	pickle.dump(inputTree, fw)
    	fw.close()
    
    def grabTree(filename):
    	"""
    	输入:文件路径名
    	输出:决策树
    	描述:从文件读取决策树
    	"""
    	import pickle
    	fr = open(filename, 'rb')
    	return pickle.load(fr)
    
    def createDataSet():
    	"""
    	outlook->  0: sunny | 1: overcast | 2: rain
    	temperature-> 0: hot | 1: mild | 2: cool
    	humidity-> 0: high | 1: normal
    	windy-> 0: false | 1: true 
    	"""
    	dataSet = [[0, 0, 0, 0, 'N'], 
    			   [0, 0, 0, 1, 'N'], 
    			   [1, 0, 0, 0, 'Y'], 
    			   [2, 1, 0, 0, 'Y'], 
    			   [2, 2, 1, 0, 'Y'], 
    			   [2, 2, 1, 1, 'N'], 
    			   [1, 2, 1, 1, 'Y']]
    	labels = ['outlook', 'temperature', 'humidity', 'windy']
    	return dataSet, labels
    
    def createTestSet():
    	"""
    	outlook->  0: sunny | 1: overcast | 2: rain
    	temperature-> 0: hot | 1: mild | 2: cool
    	humidity-> 0: high | 1: normal
    	windy-> 0: false | 1: true 
    	"""
    	testSet = [[0, 1, 0, 0], 
    			   [0, 2, 1, 0], 
    			   [2, 1, 1, 0], 
    			   [0, 1, 1, 1], 
    			   [1, 1, 0, 1], 
    			   [1, 0, 1, 0], 
    			   [2, 1, 0, 1]]
    	return testSet
    
    def main():
    	dataSet, labels = createDataSet()
    	labels_tmp = labels[:] # 拷贝,createTree会改变labels
    	desicionTree = createTree(dataSet, labels_tmp)
    	#storeTree(desicionTree, 'classifierStorage.txt')
    	#desicionTree = grabTree('classifierStorage.txt')
    	print('desicionTree:
    ', desicionTree)
    	treePlotter.createPlot(desicionTree)
    	testSet = createTestSet()
    	print('classifyResult:
    ', classifyAll(desicionTree, labels, testSet))
    
    if __name__ == '__main__':
    	main()
    

    输出样例

    desicionTree:
     {'outlook': {0: 'N', 1: 'Y', 2: {'windy': {0: 'Y', 1: 'N'}}}}
    classifyResult:
     ['N', 'N', 'Y', 'N', 'Y', 'Y', 'N']
    

    递归建树

    附加文件

    treePlotter.py

    需要配置matplotlib才能使用

    import matplotlib.pyplot as plt
    
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")
    leafNode = dict(boxstyle="round4", fc="0.8")
    arrow_args = dict(arrowstyle="<-")
    
    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    	createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction', 
    							xytext=centerPt, textcoords='axes fraction', 
    							va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
    
    def getNumLeafs(myTree):
    	numLeafs = 0
    	firstStr = list(myTree.keys())[0]
    	secondDict = myTree[firstStr]
    	for key in secondDict.keys():
    		if type(secondDict[key]).__name__ == 'dict':
    			numLeafs += getNumLeafs(secondDict[key])
    		else:
    			numLeafs += 1
    	return numLeafs
    
    def getTreeDepth(myTree):
    	maxDepth = 0
    	firstStr = list(myTree.keys())[0]
    	secondDict = myTree[firstStr]
    	for key in secondDict.keys():
    		if type(secondDict[key]).__name__ == 'dict':
    			thisDepth = getTreeDepth(secondDict[key]) + 1
    		else:
    			thisDepth = 1
    		if thisDepth > maxDepth:
    			maxDepth = thisDepth
    	return maxDepth
    
    def plotMidText(cntrPt, parentPt, txtString):
    	xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    	yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    	createPlot.ax1.text(xMid, yMid, txtString)
    
    def plotTree(myTree, parentPt, nodeTxt):
    	numLeafs = getNumLeafs(myTree)
    	depth = getTreeDepth(myTree)
    	firstStr = list(myTree.keys())[0]
    	cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalw, plotTree.yOff)
    	plotMidText(cntrPt, parentPt, nodeTxt)
    	plotNode(firstStr, cntrPt, parentPt, decisionNode)
    	secondDict = myTree[firstStr]
    	plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
    	for key in secondDict.keys():
    		if type(secondDict[key]).__name__ == 'dict':
    			plotTree(secondDict[key], cntrPt, str(key))
    		else:
    			plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalw
    			plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
    			plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    	plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
    
    def createPlot(inTree):
    	fig = plt.figure(1, facecolor='white')
    	fig.clf()
    	axprops = dict(xticks=[], yticks=[])
    	createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    	plotTree.totalw = float(getNumLeafs(inTree))
    	plotTree.totalD = float(getTreeDepth(inTree))
    	plotTree.xOff = -0.5 / plotTree.totalw
    	plotTree.yOff = 1.0
    	plotTree(inTree, (0.5, 1.0), '')
    	plt.show()
    
  • 相关阅读:
    设计一个洗牌的程序?就是将这副牌进行随机交换
    STL中vector,Map,Set的实现原理
    实现一个Memcpy函数:将源指针所指的区域从起始地址开始的n个字节复制到目的指针所指区域
    四个名词(很常见):虚拟内存,虚拟内存地址(线性地址),物理内存,物理内存地址,逻辑地址
    进程的状态
    ubuntu VNC中Xfce4中Tab键失效的解决方法
    GPU安装
    Parted 手册
    opesntack 底层共享存储 迁移配置
    mysql主从同步
  • 原文地址:https://www.cnblogs.com/wsine/p/5180310.html
Copyright © 2011-2022 走看看