zoukankan      html  css  js  c++  java
  • 图论:二分图最大权匹配KM算法

    洛谷P6577 【模板】二分图最大权完美匹配

    点击查看代码块
    /*
    Kuhn-Munkres
    复杂度O(n^3),加入松弛操作
    */
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    const int maxn = 1010;
    const int inf = 0x7f7f7f7f;
    const ll inf_ll = 1ll*inf*inf;
    typedef long long ll;
    int n,m;
    struct KM{
        ll mp[maxn][maxn];
        int link_x[maxn], link_y[maxn], N;//邻接矩阵存图,左边点的匹配点,右边点的匹配点,两边点中的最大点数个数+1
        bool visx[maxn], visy[maxn];
        int que[maxn << 1], top, fail, pre[maxn];//手写队列
        ll hx[maxn], hy[maxn], slk[maxn];//左边点顶标,右边点顶标,松弛操作
        int check(int x){
            visx[x] =true;
            if(link_x[x]){
                que[fail++] = link_x[x];
                return visy[link_x[x]] = true;
            }
            while(x){
                link_x[x] = pre[x];
                swap(x, link_y[pre[x]]);
            }
            return 0;
        }
        void bfs(int S){
            for(int i=1; i<=N; i++){
                slk[i] = inf_ll;
                visx[i] = visy[i] = false;
            }
            top = 0; fail = 1;
            que[0] = S;
            visy[S] = true;
            while(1){
                ll d;
                while(top < fail){
                    for(int i = 1, j = que[top++]; i <= N; i++){
                        if(!visx[i] && slk[i] >= (d = hx[i] + hy[j] - mp[i][j])){
                            pre[i] = j;
                            if(d) slk[i] = d;
                            else if(!check(i)) return;
                        }
                    }
                }
                d = inf_ll;
                for(int i=1; i<=N; i++){
                    if(!visx[i] && d > slk[i]) d = slk[i];
                }
                for(int i=1; i<=N; i++){
                    if(visx[i]) hx[i] += d;
                    else slk[i] -= d;
                    if(visy[i]) hy[i] -= d;
                }
                for(int i=1; i<=N; i++){
                    if(!visx[i] && !slk[i] && !check(i)) return;
                }
            }
        }
        void init(){
            for(int i=1; i<=N; i++){
                link_x[i] = link_y[i] = 0;
                visy[i] = false;
            }
            for(int i=1; i<=N; i++){
                hx[i] = 0;
                for(int j=1; j<=N; j++){
                    if(hx[i] < mp[i][j]) hx[i] = mp[i][j];//hx初始化为x-y这条边的边权
                }
            }
        }
    }km;
    int main(){
        cin>>n>>m;
        for (int i=1;i<=n;i++){
            for (int j=1;j<=n;j++){
                km.mp[i][j] = -inf_ll;//边权有负数,初始化边权为极小值
            }
        }
        for (int i=1;i<=m;i++){
            int u,v;ll w;
            scanf("%d%d%lld",&u,&v,&w);
            km.mp[u][v]=w;
        }
        km.N = n;
        km.init();
        ll ans = 0;
        for (int i=1;i<=km.N;i++) km.bfs(i);
        for(int i=1; i<=n; i++){
            ans += km.mp[i][km.link_x[i]];
        }
        printf("%lld
    ",ans);
        for (int i=1;i<=n;i++) printf("%d%c",km.link_y[i],i == n ? '
    ' : ' ');
        return 0;
    }
    
    
    你将不再是道具,而是成为人如其名的人
  • 相关阅读:
    XidianOJ 1073 Nunchakus
    XidianOJ 1024 2的幂次表示
    XidianOJ 1072 National Disaster
    XidianOJ 1093 一元三次方程
    中国剩余定理
    bzoj2818(欧拉函数递推)
    poj2311(博弈论,sg函数)
    contesthunter#46-A(分块)
    Tree,点分治
    poj3580(splay 毒瘤题)
  • 原文地址:https://www.cnblogs.com/wsl-lld/p/13488693.html
Copyright © 2011-2022 走看看