求(sum_{i=1}^N lfloor frac Ni floor) ,(N leq 10^{12})
显然不能直接做,
数论性质:
$ 1. large lfloor frac Ni floor$最多只有(2sqrt{N})种取值
证明:对于(ile sqrt{N},) 只有 (sqrt{N}) 种,对于 (i>sqrt{N},large{frac Ni}<sqrt{N}),也只有 (sqrt{N}) 种取值,共计 (2 sqrt{N}) 种(;;Box)
(2.) 设 $large lfloor frac N{i'} floor $ 与 (large lfloor frac Ni floor) 相等,则 (i') 的最大值为 $large left lfloor frac N{left lfloor frac Ni ight floor } ight floor $
证明:
设 (large{ lfloor frac Ni floor}=k) ,于是可以写成 (ki+p=N,1le p<i) 的形式,若 (large{lfloor frac N{i+d} floor}=k) ,于是有 (k(i+d)+p'=N) ,可以得到 (p'=p-kd) ,则 (d) 能取的最大值为 (large lfloor frac pk floor) ,于是 :
[egin{aligned}i'&=i+d_{max} \ &=i+lfloor frac pk floor \&=i+left lfloor frac {N ;mod; i}{lfloor frac Ni floor} ight floor \ &=i+left lfloor frac {N-lfloor frac Ni floor i}{lfloor frac Ni floor} ight floor \ &=left lfloor i + frac {N-lfloor frac Ni floor i}{lfloor frac Ni floor} ight floor \ &=left lfloor frac{lfloor frac Ni floor i}{lfloor frac Ni floor} + frac {N-lfloor frac Ni floor i}{lfloor frac Ni floor} ight floor \ &=left lfloor frac N{lfloor frac Ni floor} ight floor quad quadBoxend{aligned}]
然后,设两个指针 (L) 和 (R) , (L) 的初始值为 (1) ,每次令 (large R=left lfloor frac N{lfloor frac NL floor} ight floor) ,将 (large (R-L+1)cdot lfloor frac NL floor) 累加至答案中 ,再令 (L=R+1)
由于 (large lfloor frac NL floor) 只有 (2sqrt N) 种取值 ,且单调递减,则最多只有 (2sqrt N) 个取值不同的段,时间复杂度为 (O(sqrt N))
模板:
1 int main() 2 { 3 ll ans=0,n; 4 scanf("%lld",&n); 5 for(int l=1,r;l<=n;l=r+1){ 6 r=n/(n/l); 7 ans += (r-l+1)*(n/l); 8 } 9 printf("%lld ",ans); 10 return 0; 11 }
拓:(forall a,b,cin Z),(left lfloor frac{a}{bc} ight floor = left lfloor frac{left lfloor frac{a}{b} ight floor}{c} ight floor)
(sum_{i=1}^{n}frac{left ( 1+left lfloor frac{n}{i} ight floor ight )*left lfloor frac{n}{i} ight floor}{2}=sum_{i=1}^{n}i*left lfloor frac{n}{i} ight floor)