Fibonacci
Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … An alternative formula for the Fibonacci sequence is . Given an integer n, your goal is to compute the last 4 digits of Fn. Input The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1. Output For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000). Sample Input 0
9
999999999
1000000000
-1
Sample Output 0
34
626
6875
代码如下: #include <iostream> #include<cstdio> #include<cstring> using namespace std; const int mod = 10000; const int N = 2;//矩阵的维数,角标从0开始 struct Matrix { __int64 v[N][N]; Matrix() { memset(v,0,sizeof(v)); } }; //矩阵的乘法p1*p2 Matrix multi(Matrix p1,Matrix p2) { Matrix res; for(int i=0;i<N;i++) for(int j=0;j<N;j++) if(p1.v[i][j])//代码优化,是0的话就不用计算 for(int k=0;k<N;k++) res.v[i][k]=(res.v[i][k]+(p1.v[i][j]*p2.v[j][k]))%mod; return res; } //矩阵的快速幂p^k Matrix pow(Matrix p,__int64 k) { Matrix t; for(int i=0;i<N;i++)//初始化为单位矩阵 t.v[i][i]=1; while(k) { if(k&1) t=multi(t,p); p=multi(p,p); k=k>>1; } return t; } int main() { __int64 n; Matrix e,ans; e.v[0][0]=e.v[0][1]=e.v[1][0]=1; e.v[1][1]=0; while(scanf("%I64dd",&n)!=EOF&&n!=-1) { ans = pow(e,n); printf("%I64d ",ans.v[0][1]); } return 0; } |