Problem 2214 Knapsack problem
Accept: 412 Submit: 1650
Time Limit: 3000 mSec Memory Limit : 32768 KB
Problem Description
Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).
Input
The first line contains the integer T indicating to the number of test cases.
For each test case, the first line contains the integers n and B.
Following n lines provide the information of each item.
The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.
1 <= number of test cases <= 100
1 <= n <= 500
1 <= B, w[i] <= 1000000000
1 <= v[1]+v[2]+...+v[n] <= 5000
All the inputs are integers.
Output
For each test case, output the maximum value.
Sample Input
Sample Output
/* 0-1背包问题: 因为重量太大,肯定不能按照原来的标准模型套用,开不了那么大的数组 但是总价值却小于5000; 根据价值构造dp方程,找到最小的重量能够得到这个价值 dp[100]=15,就是代表使得价值为100的最小重量为15; */ #include <iostream> #include<cstring> #include<cstdio> using namespace std; const int maxs = 600; int n,B; int w[maxs]; int v[maxs]; int dp[5005]; int main() { freopen("in.txt","r",stdin); int T; cin>>T; while(T--) { int sum = 0; scanf("%d%d ",&n,&B); for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&v[i]),sum+=v[i]; memset(dp,0x3f,sizeof(dp)); dp[0]=0; for(int i=n;i>=1;i--) for(int j=sum;j>=v[i];j--) dp[j]=min(dp[j],dp[j-v[i]]+w[i]); for(int i=sum;i>=0;i--) if(dp[i]<=B) { printf("%d ",i); break; } } return 0; }