zoukankan      html  css  js  c++  java
  • 实验三-朴素贝叶斯算法及应用

    作业属于哪个课程 机器学习实验
    作业要求在哪里 朴素贝叶斯算法及应用
    学号 3180701320
    一、实验目的
    1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
    2.掌握常见的高斯模型,多项式模型和伯努利模型;
    3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
    4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
    二、实验要求
    1.实现高斯朴素贝叶斯算法。
    2.熟悉sklearn库中的朴素贝叶斯算法;
    3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
    4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
    三、实验报告内容
    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
    5.讨论朴素贝叶斯算法的优缺点。
    四、实验代码
    1.***
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math

    data

    def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = [
    'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
    ]
    data = np.array(df.iloc[:100, :])
    # print(data)
    return data[:, :-1], data[:, -1]
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    X_test[0], y_test[0]
    class NaiveBayes:
    def init(self):
    self.model = None
    # 数学期望
    @staticmethod
    def mean(X):
    return sum(X) / float(len(X))
    # 标准差(方差)
    def stdev(self, X):
    avg = self.mean(X)
    return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
    exponent = math.exp(-(math.pow(x - mean, 2) /
    (2 * math.pow(stdev, 2))))
    return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
    # 处理X_train
    def summarize(self, train_data):
    summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
    return summaries
    # 分类别求出数学期望和标准差
    def fit(self, X, y):
    labels = list(set(y))
    data = {label: [] for label in labels}
    for f, label in zip(X, y):
    data[label].append(f)
    self.model = {
    label: self.summarize(value)
    for label, value in data.items()
    }
    return 'gaussianNB train done!'
    # 计算概率
    def calculate_probabilities(self, input_data):
    # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
    # input_data:[1.1, 2.2]
    probabilities = {}
    for label, value in self.model.items():
    probabilities[label] = 1
    for i in range(len(value)):
    mean, stdev = value[i]
    probabilities[label] *= self.gaussian_probability(
    input_data[i], mean, stdev)
    return probabilities
    # 类别
    def predict(self, X_test):
    # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
    label = sorted(
    self.calculate_probabilities(X_test).items(),
    key=lambda x: x[-1])[-1][0]
    return label
    def score(self, X_test, y_test):
    right = 0
    for X, y in zip(X_test, y_test):
    label = self.predict(X)
    if label == y:
    right += 1
    return right / float(len(X_test))
    model = NaiveBayes()
    model.fit(X_train, y_train)
    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    model.score(X_test, y_test)
    from sklearn.naive_bayes import GaussianNB
    clf = GaussianNB()
    clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    clf.predict([[4.4, 3.2, 1.3, 0.2]])
    from sklearn.naive_bayes import BernoulliNB, MultinomialNB # ***伯努利模型和多项式模型
    五、运行截图














  • 相关阅读:
    iOS8 新特性
    iOS Autoresizing Autolayout Size classes
    tabBar的内部控件
    导航控制器的根控制器 是滚动性&普通的frame区别
    选择排序&冒泡排序&折半查找
    站内搜索
    Shell安装
    Xcode themes
    扫码跳转AppStore
    iOS手机APP命名规范整理
  • 原文地址:https://www.cnblogs.com/wu102030/p/14944127.html
Copyright © 2011-2022 走看看