zoukankan      html  css  js  c++  java
  • ReentrantLock 源码解析

    ReentrantLock 简介

    ReentrantLock也是一个可重入的互斥锁,跟 synchronized 提供一样的线程同步功能,但是比 synchronized 更加灵活,优化了 synchronized 的不足。

    ReentrantLock 基于 AQS 实现,它使用一个内部类来实现 AQS 接口,提供 Sync 同步锁的功能。

    ReentrantLock 的几个重要方法:

    • lock:阻塞加锁直到获取锁为止。与 synchronized 语义一样,此方法不支持中断、超时。

    • lockInterruptibly:阻塞加锁,支持中断。

    • tryLock:尝试获得锁,获取锁返回 true,获取不到锁返回 false。该方法不等待,立即返回。

    • tryLock(long time,TimeUnit unit):阻塞可超时,在给定时间内尝试获得锁,若在该指定时间到达之后,还没获取锁,则返回 false。该方法和 tryLock() 方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回 false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回 true。

    • unlock:释放锁。

    ReentrantLock 源码

    AbstractQueuedSynchronizer

    属性
    public abstract class AbstractQueuedSynchronizer
        extends AbstractOwnableSynchronizer
        implements java.io.Serializable {
    
        private static final long serialVersionUID = 7373984972572414691L;
    
        /**
         * Creates a new {@code AbstractQueuedSynchronizer} instance
         * with initial synchronization state of zero.
         */
        protected AbstractQueuedSynchronizer() { }
        
        /**
         * Wait queue node class.
         */
        static final class Node {
    		// Node 类源码见下面
        }
    
        /**
         * Head of the wait queue, lazily initialized.  Except for
         * initialization, it is modified only via method setHead.  Note:
         * If head exists, its waitStatus is guaranteed not to be
         * CANCELLED.
         */
        private transient volatile Node head;
    
        /**
         * Tail of the wait queue, lazily initialized.  Modified only via
         * method enq to add new wait node.
         */
        private transient volatile Node tail;
    
        /**
         * The synchronization state.
         */
        private volatile int state;
    
        /**
         * Returns the current value of synchronization state.
         * This operation has memory semantics of a {@code volatile} read.
         * @return current state value
         */
        protected final int getState() {
            return state;
        }
    
        /**
         * Sets the value of synchronization state.
         * This operation has memory semantics of a {@code volatile} write.
         * @param newState the new state value
         */
        protected final void setState(int newState) {
            state = newState;
        }
    
        /**
         * Atomically sets synchronization state to the given updated
         * value if the current state value equals the expected value.
         * This operation has memory semantics of a {@code volatile} read
         * and write.
         *
         * @param expect the expected value
         * @param update the new value
         * @return {@code true} if successful. False return indicates that the actual
         *         value was not equal to the expected value.
         */
        protected final boolean compareAndSetState(int expect, int update) {
            // See below for intrinsics setup to support this
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
        }
    
        // Queuing utilities
    
        /**
         * The number of nanoseconds for which it is faster to spin
         * rather than to use timed park. A rough estimate suffices
         * to improve responsiveness with very short timeouts.
         */
        static final long spinForTimeoutThreshold = 1000L;
    
    }
    
    Node
    /**
         * Wait queue node class.
         */
    static final class Node {
        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;
    
        // 表示当前的线程已被取消(waitStatus > 0)
        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
    
        // 表示后继节点在等待当前结点唤醒。
        // 后继节点入队时,会将前继节点的状态更新为 SIGNAL(逻辑在 shouldParkAfterFailedAcquire 方法里)
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
    
        // 表示当前节点在等待 condition,也就是在 condition 队列中
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
    
        // 传播状态模式下,前继节点不仅会唤醒其后继节点,同时也可能会唤醒后继的后继节点。
        /**
             * waitStatus value to indicate the next acquireShared should
             * unconditionally propagate
             */
        static final int PROPAGATE = -3;
    
        /**
             * 节点状态。新节点入队时的默认状态为 0
             * waitStatus 是负值表示节点处于有效等待状态,而正值表示节点已被取消
             * 
             * Status field, taking on only the values:
             *   SIGNAL:     The successor of this node is (or will soon be)
             *               blocked (via park), so the current node must
             *               unpark its successor when it releases or
             *               cancels. To avoid races, acquire methods must
             *               first indicate they need a signal,
             *               then retry the atomic acquire, and then,
             *               on failure, block.
             *               该状态节点的后继节点通过 park 被阻塞了,所以当前节点必须在
             *               释放锁或者被取消时去调用 unpark 唤醒其后继节点
             *   CANCELLED:  This node is cancelled due to timeout or interrupt.
             *               Nodes never leave this state. In particular,
             *               a thread with cancelled node never again blocks.
             *               该状态的节点由于超时或者中断被取消了。然后该节点不会修改状态
             *   CONDITION:  This node is currently on a condition queue.
             *               It will not be used as a sync queue node
             *               until transferred, at which time the status
             *               will be set to 0. (Use of this value here has
             *               nothing to do with the other uses of the
             *               field, but simplifies mechanics.)
             *   PROPAGATE:  A releaseShared should be propagated to other
             *               nodes. This is set (for head node only) in
             *               doReleaseShared to ensure propagation
             *               continues, even if other operations have
             *               since intervened.
             *   0:          None of the above
             *
             * The values are arranged numerically to simplify use.
             * Non-negative values mean that a node doesn't need to
             * signal. So, most code doesn't need to check for particular
             * values, just for sign.
             *
             * The field is initialized to 0 for normal sync nodes, and
             * CONDITION for condition nodes.  It is modified using CAS
             * (or when possible, unconditional volatile writes).
             */
        volatile int waitStatus;
    
        /**
             * 前驱节点
             */
        volatile Node prev;
    
        /**
             * 后继节点
             */
        volatile Node next;
    
        /**
             * 获取锁的线程
             * 
             * The thread that enqueued this node.  Initialized on
             * construction and nulled out after use.
             */
        volatile Thread thread;
    
        /**
        Node 既可以作为同步队列节点使用,也可以作为Condition的等待队列节点使用
        在作为同步队列节点时(lock/unlock),nextWaiter 可能有两个值:EXCLUSIVE、SHARED 标识当前节点是独占模式还是共享模式,同步队列的链表是通过上面的 prev 和 next 属性实现的
        在作为等待队列节点使用时(await/signal),nextWaiter 保存后继的 await 等待节点(属性名称 nextWaiter 看的出来)
        Lock 锁类似于 synchronized 锁,即可以实现阻塞锁功能,也可以实现 wait/notify 进行线程间的消息通信功能
             * Link to next node waiting on condition, or the special
             * value SHARED.  Because condition queues are accessed only
             * when holding in exclusive mode, we just need a simple
             * linked queue to hold nodes while they are waiting on
             * conditions. They are then transferred to the queue to
             * re-acquire. And because conditions can only be exclusive,
             * we save a field by using special value to indicate shared
             * mode.
             */
        Node nextWaiter;
    
        /**
             * Returns true if node is waiting in shared mode.
             */
        final boolean isShared() {
            return nextWaiter == SHARED;
        }
    
        /**
             * Returns previous node, or throws NullPointerException if null.
             * Use when predecessor cannot be null.  The null check could
             * be elided, but is present to help the VM.
             *
             * @return the predecessor of this node
             */
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }
    
        Node() {    // Used to establish initial head or SHARED marker
        }
    
        Node(Thread thread, Node mode) {     // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }
    
        Node(Thread thread, int waitStatus) { // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }
    
    tryAcquire
    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
    
    tryRelease
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
    
    tryAcquireShared
    /**
     * 尝试获取共享锁
     * 
     * 返回值:
     * 1. 返回负数表示获取共享锁失败
     * 2. 返回 0 表示获取共享锁成功,但没有剩余可用资源
     * 3. 返回正数表示获取共享锁成功,且有剩余资源
     * 
     * 子类方法的不同实现:
     * 在 ReentrantReadWriteLock 中的实现,返回值只有两种,1 表示获取锁成功,-1 表示获取锁失败
     * 在 Semaphore 中的实现,返回值代表资源剩余量,返回值大于等于 0 表示获取锁成功,小于 0 表示获取锁失败
     */
    protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }
    
    tryReleaseShared
    protected boolean tryReleaseShared(int arg) {
        throw new UnsupportedOperationException();
    }
    
    acquire
    // 阻塞获取锁
    // 获取到锁了,该方法就能执行完成,然后继续执行业务逻辑;否则阻塞执行该方法的线程,等待唤醒
    public final void acquire(int arg) {
        // 尝试获取到锁直接退出方法,表示已拿到锁,继续执行业务逻辑
        if (!tryAcquire(arg) &&
            // 没有获取锁,将当前线程插入到等待队列中
            // acquireQueued 方法返回了,表示线程被唤醒了
            // acquireQueued 返回 true,表示线程被中断了,否则表示被正常唤醒,可以继续执行业务逻辑
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    
    addWaiter
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        // 下面的入队步骤和 enq 方法里的入队步骤相同
        // 快速的尝试是否入队成功,成功了就不用走 enq 方法了
        Node pred = tail;
        // pred 为空,表示链表没有插入过元素节点
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        // 上面尝试入队失败,进入 enq 方法,开始自旋入队,直到入队成功
        enq(node);
        return node;
    }
    
    enq
    // 将 node 节点插入到双向链表尾部
    // 返回 node 的前序节点
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            // 尾结点为空,说明队列为空
            if (t == null) { // Must initialize
                // 初始化一个头结点,作为哨兵节点
                if (compareAndSetHead(new Node()))
                    // 尾结点指向头结点
                    tail = head;
                // 然后继续循环
            } else {
                // node 的前序节点先指向尾结点
                node.prev = t;
                // 尝试将尾结点改为 node
                if (compareAndSetTail(t, node)) {
                    // 修改尾结点为 node 成功后,将原先尾结点的后续节点指向 node
                    t.next = node;
                    return t;
                }
            }
        }
    }
    
    acquireQueued
    // 将入队后的 node 追加到一个没有被取消的线程节点后,并将该线程节点的 waitStatus 设置为 Node.SIGNAL
    // 然后 node 线程节点阻塞(park),等待 release 方法唤醒
    // 被 park 前或者被 unpark 后,线程都会不停的自旋去获取锁(p == head && tryAcquire(arg))
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            // 在等待队列中自旋等待加锁
            for (;;) {
                // 获取 node 的 prev 节点
                final Node p = node.predecessor();
                // 如果 node 的前序节点是 head 节点,并且尝试获取锁成功
                if (p == head && tryAcquire(arg)) {
                    // 将当前节点设置为头结点
                    setHead(node);
                    // 获取到锁之后会把原 head 给释放
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
              
                // shouldParkAfterFailedAcquire:(每添加一个节点的时候)将节点的前序节点 pred 的状态设置为 Node.SIGNAL
                // parkAndCheckInterrupt:阻塞新加入节点的线程(并且检查线程是否被中断)
                // 如果 shouldParkAfterFailedAcquire 方法返回 false,则会重新执行 for 循环
                // parkAndCheckInterrupt 方法中被阻塞的线程如果被唤醒了,可能是其它线程调用了 unpark 方法
                // 也可能是调用了 interrupt 方法,所以 parkAndCheckInterrupt 返回 true,表示线程是被其它
                // 线程中断了线程,则进入到 if 中将 interrupted 设置为 true
                if (shouldParkAfterFailedAcquire(p, node) &&
                    // park、unpark 方法调用不分先后
                    // 所以线程先被 release 方法 unpark,然后这里再被 park,该线程不会被阻塞
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
    setHead
    private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }
    
    shouldParkAfterFailedAcquire
    // (每添加一个节点的时候)将节点的前序节点 pred 的状态设置为 Node.SIGNAL
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
                 * This node has already set status asking a release
                 * to signal it, so it can safely park.
                 */
            return true;
        if (ws > 0) {
            /*
                 * Predecessor was cancelled. Skip over predecessors and
                 * indicate retry.
                 */
            // pred 被取消了,将 node 的前驱节点往前移
            // 从尾结点向头结点方向遍历,找到一个没有被取消的前驱节点
            do {
                // 重置 node 的前驱节点
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            // 重置 node 前驱节点的后继节点
            pred.next = node;
        } else {
    
            /*
                 * waitStatus must be 0 or PROPAGATE.  Indicate that we
                 * need a signal, but don't park yet.  Caller will need to
                 * retry to make sure it cannot acquire before parking.
                 */
            // 将 pred 的 waitStatus 设置为 Node.SIGNAL
            // node 节点初始化和 head 结点唤醒后继节点时,node 和 head 节点的 awaitStatus 都会被设置为 0
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    
    parkAndCheckInterrupt
    // 阻塞线程并且检查是否需要中断线程
    private final boolean parkAndCheckInterrupt() {
        // 中断当前线程
        LockSupport.park(this);
        // LockSupport.park 阻塞会响应中断,并且中断标记被设置成 true,但不抛出 InterruptedException 异常
        // 所以如果有触发过中断请求,那么这个方法会返回当前的中断标识 true
        return Thread.interrupted();
    }
    
    cancelAcquire
    // 删除 node 节点
    private void cancelAcquire(Node node) {
        // Ignore if node doesn't exist
        if (node == null)
            return;
    
        node.thread = null;
    
        // Skip cancelled predecessors
        // node 的 prev 节点
        Node pred = node.prev;
        // 跳过被取消的节点
        while (pred.waitStatus > 0) {
            node.prev = pred = pred.prev;
        }
    
        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        // node 当前前序节点的后继节点
        Node predNext = pred.next;
    
        // 将 node 的 waitStatus 设置为 Node.CANCELLED(不需要使用 cas)
        node.waitStatus = Node.CANCELLED;
    
        // If we are the tail, remove ourselves.
        // 如果 node 是 tail 节点,则要将 node 节点的 prev 节点设置为 tail 节点
        if (node == tail && compareAndSetTail(node, pred)) {
            // 设置 node 的 next 节点为 null
            compareAndSetNext(pred, predNext, null);
        } else {
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                // 获取 node 节点的 next 节点
                Node next = node.next;
                // 找 node 的后继没有被取消的节点
                // 将后继节点设置为 node 前序节点的后继节点
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                // 唤醒 node 节点的后继节点
                // 情况1:node 的前序节点是 head 结点
                // 情况2:node 的前序节点的 waitStatus 不是 SIGNAL,并且没有成功设置为 SIGNAL
                // 情况3:node 的前序节点的线程为空
                unparkSuccessor(node);
            }
            
            node.next = node; // help GC
        }
    }
    
    unparkSuccessor
    // node 是头结点
    // 将 node 节点的 waitStatus 设置为 0
    // 唤醒 node 节点后第一个没有被取消的线程节点(从尾结点向头结点方向遍历)
    private void unparkSuccessor(Node node) {
        /*
             * If status is negative (i.e., possibly needing signal) try
             * to clear in anticipation of signalling.  It is OK if this
             * fails or if status is changed by waiting thread.
             */
        int ws = node.waitStatus;
        if (ws < 0) {
            // 将 node 节点(head 节点)的 awaitStatus 设置为 0
            compareAndSetWaitStatus(node, ws, 0);
        }
        
        /*
             * Thread to unpark is held in successor, which is normally
             * just the next node.  But if cancelled or apparently null,
             * traverse backwards from tail to find the actual
             * non-cancelled successor.
             */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            // 唤醒线程是从尾结点遍历的,从头结点遍历会有短链的问题
            for (Node t = tail; t != null && t != node; t = t.prev)
                // waitStatus <= 0 是正常的状态
                if (t.waitStatus <= 0)
                    s = t;
        }
        // 从尾结点开始遍历,最终找到一个可唤醒的节点
        if (s != null)
            LockSupport.unpark(s.thread);
    }
    
    selfInterrupt
    // 中断当前线程
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }
    
    release
    public final boolean release(int arg) {
        // 调用子类实现类,如 ReentrantLock.Sync 中的 tryRelease 方法(ReentrantLock 是重入锁,重入几次就要释放几次锁)
        // 重入锁时,要将所有重入锁都释放了,tryRelease 才会返回 true
        if (tryRelease(arg)) {
            Node h = head;
            // unparkSuccessor 方法将 h.waitStatus 设置为 0
            // 如果等于 0 了,表示线程已被释放
            if (h != null && h.waitStatus != 0)
                // 唤醒头结点的后继节点
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
    acquireInterruptibly
    public final void acquireInterruptibly(int arg)
        throws InterruptedException {
        // 先判断当前线程是否被中断
        if (Thread.interrupted())
            // 中断了就抛出异常
            // (代码中线程被中断了需要自己来决定是否对线程做一些处理,比抛出异常可以中断线程的继续执行)
            throw new InterruptedException();
        // 尝试获取锁
        if (!tryAcquire(arg))
            // 没有获取锁,则加入到可响应异常的阻塞线程队列中
            doAcquireInterruptibly(arg);
    }
    
    doAcquireInterruptibly
    // 和 acquireQueued 方法类似
    // acquireQueued 要是获取锁后如果判断被中断了,则返回 boolean
    // 而 doAcquireInterruptibly 是抛出 InterruptedException 异常
    private void doAcquireInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    // 如果线程被中断了,则抛出异常
                    throw new InterruptedException();
            }
        } finally {
            // 线程是被抛出异常结束的
            if (failed)
                // 线程节点 node 中断获取锁
                cancelAcquire(node);
        }
    }
    
    tryAcquireNanos
    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
        throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
    }
    
    doAcquireNanos
    // 带超时时间的获取锁,超时退出
    // 主要逻辑也同前面获取锁逻辑,只是加了超时的判断及处理逻辑
    private boolean doAcquireNanos(int arg, long nanosTimeout)
        throws InterruptedException {
        // 超时时间要大于 0
        if (nanosTimeout <= 0L)
            return false;
        // 计算超时的截止时间
        final long deadline = System.nanoTime() + nanosTimeout;
        // 排它(锁)节点
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                // 走到这里会判断是否已过期,过期则返回
                // 并且下面代码中的 nanosTimeout > spinForTimeoutThreshold) 判断如果不成立,也会重试 for 循环,再次走到这里判断是否过期
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    // 阻塞线程前判断一下是否过期
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                // 可抛异常
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
    acquireShared
    public final void acquireShared(int arg) {
        // tryAcquireShared 获取锁,并返回剩余可用资源
        // 如果获取成功(tryAcquireShared 返回值 >= 0),则表示获取锁,直接执行返回
        if (tryAcquireShared(arg) < 0)
            // tryAcquireShared 返回值 < 0 表示获取锁失败
            // 则调用 doAcquireShared 方法阻塞等待(类似于排它锁)
            doAcquireShared(arg);
    }
    
    doAcquireShared
    // 请求共享锁
    private void doAcquireShared(int arg) {
        // 共享节点
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                // node 的前序节点
                final Node p = node.predecessor();
                // 如果前序节点是 head 节点
                if (p == head) {
                    // 尝试获取共享锁
                    // r >= 0 表示获取共享锁成功
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 设置 head 节点和唤醒后继的所有共享节点(互斥锁这里是调用 setHead 方法)
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        // 响应中断
                        // 将用于中断的 selfInterrupt() 方法放到 doAcquireShared() 里了,而独占模式是放在 acquireQueued() 外面
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                // 可能会将 PROPAGATE 状态节点变为 SIGNAL 状态
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
    setHeadAndPropagate
    // propagate >= 0 进入该方法
    private void setHeadAndPropagate(Node node, int propagate) {
        // 获取 head 结点
        Node h = head; // Record old head for check below
        // 将 node 节点设置为 head 节点
        setHead(node);
        // propagate > 0 (获得了共享锁后还有剩余资源)才进入该逻辑
        // head 头结点为 null,或 waitStatus < 0(共享节点)
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            // 重新获取 head 节点,head 头结点为 null,或 waitStatus < 0(共享节点)
            (h = head) == null || h.waitStatus < 0) {
            // 唤醒 node 的后继节点
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
    
    doReleaseShared
    private void doReleaseShared() {
        /*
             * Ensure that a release propagates, even if there are other
             * in-progress acquires/releases.  This proceeds in the usual
             * way of trying to unparkSuccessor of head if it needs
             * signal. But if it does not, status is set to PROPAGATE to
             * ensure that upon release, propagation continues.
             * Additionally, we must loop in case a new node is added
             * while we are doing this. Also, unlike other uses of
             * unparkSuccessor, we need to know if CAS to reset status
             * fails, if so rechecking.
             */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                // head 头结点 waitStatus 是 Node.SIGNAL,则唤醒后继节点
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                // waitStatus 是 0,则改为 Node.PROPAGATE
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }
    
    releaseShared
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
    
    acquireSharedInterruptibly
    public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
    
    tryAcquireSharedNanos
    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
        throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 ||
            doAcquireSharedNanos(arg, nanosTimeout);
    }
    
    hasQueuedPredecessors
    public final boolean hasQueuedPredecessors() {
        // The correctness of this depends on head being initialized
        // before tail and on head.next being accurate if the current
        // thread is first in queue.
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        // h != t 表示队列不为空
        return h != t &&
            // (s = h.next) == null 说明此时有其它线程节点先当前线程入队了(enq 方法),当前正修改了 tail 指针,但还没有设置 head 指针,所以当前节点前有前序节点(此时不会走 s.thread != Thread.currentThread())
            // s.thread != Thread.currentThread() 说明当前线程前有前序节点
            ((s = h.next) == null || s.thread != Thread.currentThread());
    }
    
    isOnSyncQueue
    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        if (node.next != null) // If has successor, it must be on queue
            return true;
        /*
             * node.prev can be non-null, but not yet on queue because
             * the CAS to place it on queue can fail. So we have to
             * traverse from tail to make sure it actually made it.  It
             * will always be near the tail in calls to this method, and
             * unless the CAS failed (which is unlikely), it will be
             * there, so we hardly ever traverse much.
             */
        return findNodeFromTail(node);
    }
    
    findNodeFromTail
    // 从尾结点遍历查找 node 节点,找到返回 true,否则返回 false
    private boolean findNodeFromTail(Node node) {
        Node t = tail;
        for (;;) {
            // node 是 tail 节点,返回 true
            if (t == node)
                return true;
            // 尾节点为 null,返回 false
            if (t == null)
                return false;
            // 往 head 结点遍历
            t = t.prev;
        }
    }
    
    fullyRelease
    // 一次性释放掉当前锁的全部重入次数
    // 如果失败了就将传参的 node 节点的 waitStatus 设置为 Node.CANCELLED
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }
    

    Sync

    主要实现了 nonfairTryAcquire 方法和 tryRelease 方法。

    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;
    
        // 加阻塞锁
        abstract void lock();
    
        // 尝试获取非公平锁
        @ReservedStackAccess
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            // c == 0 表示没有线程获取锁
            if (c == 0) {
                // 当前线程尝试加锁,实现非公平
                if (compareAndSetState(0, acquires)) {
                    // 加锁成功,将当前线程设置给锁的 exclusiveOwnerThread 属性,表示当前线程获取到了该锁
                    setExclusiveOwnerThread(current);
                    // 返回 true,表示加锁成功
                    return true;
                }
            }
            // 如果线程已经获取到了锁(重入锁)
            else if (current == getExclusiveOwnerThread()) {
                // 加锁次数增加 acquires 次(ReentrantLock 实现类中,acquires 是 1)
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    
        // 解锁
        // 解锁的前提是已获取到了锁,所以解锁不用加同步锁
        @ReservedStackAccess
        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            // 锁只能由加锁的线程来解锁
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            // 解锁完成
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }
    
        // 当前线程此时是否独占锁
        protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don't need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }
    
        final ConditionObject newCondition() {
            return new ConditionObject();
        }
    
        // Methods relayed from outer class
    
        // 获取占有锁的线程
        final Thread getOwner() {
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }
    
        // 获取当前线程重入锁的次数
        final int getHoldCount() {
            return isHeldExclusively() ? getState() : 0;
        }
    
        // 是否加锁
        final boolean isLocked() {
            return getState() != 0;
        }
    
        /**
             * Reconstitutes the instance from a stream (that is, deserializes it).
             */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }
    

    NonfairSync

    // 非公平锁
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;
    
        // 加阻塞锁(加锁不成功,阻塞加锁的线程)
        // acquire 方法里也有 tryAcquire 逻辑,lock 方法可以改成和 FairSync 的 lock 一样的逻辑?
        @ReservedStackAccess
        final void lock() {
            // 先尝试获取锁,实现非公平锁
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                // 尝试获取锁失败,阻塞获取锁
                acquire(1);
        }
    
        // 尝试加阻塞锁(加锁不成功,返回 false,否则返回 true)
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }
    

    FairSync

    // 公平锁
    static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;
    
        // 加阻塞锁
        final void lock() {
            acquire(1);
        }
        
        // 尝试加阻塞锁
        @ReservedStackAccess
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                // 加锁前,判断当前线程的节点是否是队列的 head 节点,实现公平锁
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }
    

    FairSync 和 NonfairSync 都继承了 Sync 类,都重写了 Sync 类的 lock 方法。

    并且都有一个 tryAcquire 方法,NonfairSync 类的 tryAcquire 方法调用的是 Sync 的 nonfairTryAcquire 方法,FairSync 则自己实现了 tryAcquired 逻辑,区别就是 FairSync 的 tryAcquire 方法中 当 c 等于 0 时,有一个 !hasQueuedPredecessors() 与判断,需要先通过 hasQueuedPredecessors 判断当前线程的节点是否是队列的头结点。

    Lock 接口

    package java.util.concurrent.locks;
    
    public interface Lock {
    
        // 获取锁,若锁不可用,则当前线程将会阻塞,直到获得锁
        void lock();
    
        // 获取锁,当被中断或获取到锁才返回;
        // 若锁不可用,则当前线程被阻塞,直到获取锁或被中断
        void lockInterruptibly() throws InterruptedException;
    
        // 尝试获取锁,并立即返回;true:获取锁成功;false:获取锁失败
        boolean tryLock();
    
        // 尝试在指定的超时时间获取锁,当获取到锁时返回 true;当超时或被中断时返回 false
        boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    
        // 释放锁
        void unlock();
    
        // 返回一个和锁绑定的条件队列
        // (类似于 synchronized 的 waitSet,但是它可以创建多个,不同 condition 队列之间互不干扰)
        // 在等待条件之前线程必须先获取当前锁
        Condition newCondition();
    }
    

    ReentrantLock 属性、构造方法

    package java.util.concurrent.locks;
    
    // 实现了 Lock 接口
    public class ReentrantLock implements Lock, java.io.Serializable {
        private static final long serialVersionUID = 7373984872572414699L;
        /** Synchronizer providing all implementation mechanics */
        private final Sync sync;
    
        // 默认构造方法是 new 一个非公平锁对象
        public ReentrantLock() {
            sync = new NonfairSync();
        }
    
        // fair 是 true 则 new 公平锁,否则 new 非公平锁
        public ReentrantLock(boolean fair) {
            sync = fair ? new FairSync() : new NonfairSync();
        }
    
    }
    

    lock

    public void lock() {
        // sync 是公平锁,则调用公平锁的 lock 方法
        // sync 是非公平锁,则调用非公平锁的 lock 方法
        sync.lock();
    }
    

    lockInterruptibly

    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }
    

    tryLock

    public boolean tryLock() {
        return sync.nonfairTryAcquire(1);
    }
    

    tryLock

    public boolean tryLock(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }
    

    unlock

    public void unlock() {
        sync.release(1);
    }
    

    newCondition

    public Condition newCondition() {
        return sync.newCondition();
    }
    

    Condition 源码

    ReentrantLock 和 synchronized 功能类似,Condition 就和 Object 的 wait() 方法和 notify() 方法类似。

    Condition在Lock体系设计中,用于实现与synchronized中monitor对象所提供的wait,notify,notifyAll相同的语义,对应的方法分别为await,signal,signalAll。一个Lock可以对应多个Condition,每个Condition对应一个条件化线程等待队列,而在synchronized中只能使用monitor这一个Condition。

    和 Object 的 wait() 和 notify() 方法一样,当线程使用 Condition.await() 时,要求线程持有相关的重入锁在 Condition.await() 调用前,这个线程会释放这把锁。同理,在 Conditin.signal() 方法调用时,也要求线程先获得相关的锁。在 signal() 方法调用后,系统会从当前 Condition 对象的等待队列中,唤醒一个线程。一旦线程被唤醒,它会重新尝试获得与之绑定的重入锁,一旦成功获取,就可以继续执行了。

    Condition 接口提供的基本方法如下∶

    package java.util.concurrent.locks;
    
    public interface Condition {
    
        // await() 方法会使当前线程等待,同时释放当前锁,当其他线程中使用 signal() 或者 signalAll() 方法时,线程会重新获得锁并继续执行。
        // 或者当线程被中断时,也能跳出等待。这和 Object.wait() 方法很相似。
        void await() throws InterruptedException;
    
        // 当前线程进入等待状态直到被通知,对中断不响应
        void awaitUninterruptibly();
    
        // 当前线程进入等待状态直到被通知、中断或超时。
        // 返回值表示剩余时间,如果在 nanosTimeout 纳秒之前被唤醒,那么返回值就是 nanosTimeout - 实际耗时,返回值 <=0 说明超时
        long awaitNanos(long nanosTimeout) throws InterruptedException;
    
        // 当前线程进入等待状态直到被通知、中断或超时,如果没有到指定时间被通知返回 true,否则返回 false
        boolean await(long time, TimeUnit unit) throws InterruptedException;
    
        boolean awaitUntil(Date deadline) throws InterruptedException;
    
        // 唤醒一个等待在 Condition 上的线程,该线程从等待方法返回之前必须获得与 Condition 相关联的锁
        void signal();
    
        // 唤醒所有等待在 Condition 上的线程
        void signalAll();
    
    }
    

    在 ReentrantLock 中,Condition 是通过 newCondition() 方法创建的:

    // 创建一个 condition 对象
    final ConditionObject newCondition() {
        return new ConditionObject();
    }
    
    public class ConditionObject implements Condition, java.io.Serializable {
        private static final long serialVersionUID = 1173984872572414699L;
        /** First node of condition queue. */
        // condition 队列的第一个节点
        private transient Node firstWaiter;
        /** Last node of condition queue. */
        // condition 队列的最后一个节点
        private transient Node lastWaiter;
    
        /**
             * Creates a new {@code ConditionObject} instance.
             */
        public ConditionObject() { }
    }
    
    await
    /**
     * await对synchronized的wait的语义实现如下:将当前线程放入条件化等待队列,然后释放锁,
     在while循环内阻塞休眠,直到被放到AQS同步队列了,这时说明条件满足了,可以去竞争获取锁了,通过调用acquireQueued去竞争获取锁。如果获取锁成功了,则真正从await返回
    
     * Implements interruptible condition wait.
     * <ol>
     * <li> If current thread is interrupted, throw InterruptedException.
     * <li> Save lock state returned by {@link #getState}.
     * <li> Invoke {@link #release} with saved state as argument,
     *      throwing IllegalMonitorStateException if it fails.
     * <li> Block until signalled or interrupted.
     * <li> Reacquire by invoking specialized version of
     *      {@link #acquire} with saved state as argument.
     * <li> If interrupted while blocked in step 4, throw InterruptedException.
     * </ol>
     */
    public final void await() throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        // 将线程封装成 node 节点加入到 condition 列队中去(类似于 lock 锁里的 enq 方法)
        Node node = addConditionWaiter();
        // 释放当前线程抢占的锁(await 后要释放锁资源)
        int savedState = fullyRelease(node);
        int interruptMode = 0;
        // 自旋将等待节点被放到同步队列中
        // 这里 Node 从 Condtion Queue 里面转移到 Sync Queue 里面有两种可能:
        // 1. 其他线程调用 signal 进行转移 
        // 2. 当前线程被中断而进行 Node 的转移(在 checkInterruptWhileWaiting 里面进行转移)
        while (!isOnSyncQueue(node)) { // isOnSyncQueue:判断当前线程是否在 Sync Queue 里面
            // 阻塞当前线程
            LockSupport.park(this);
            // 阻塞的线程被唤醒了
            // 说明此是通过线程中断的方式进行唤醒, 并且已经进行了 node 的转移, 转移到 Sync Queue 里面
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        // 调用 acquireQueued 在 Sync Queue 里面进行独占锁的获取, 返回值表明在获取的过程中有没有被中断过
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        // 通过 "node.nextWaiter != null" 判断 线程的唤醒是中断还是 signal, 因为通过中断唤醒的话, 
        // 此刻代表线程的 Node 在 Condition Queue 与 Sync Queue 里面都会存在
        if (node.nextWaiter != null) // clean up if cancelled
            unlinkCancelledWaiters();
        // true 表示通过中断的方式唤醒线程
        if (interruptMode != 0)
            // 根据 interruptMode 的类型决定线程中断方式
            reportInterruptAfterWait(interruptMode);
    }
    
    addConditionWaiter
    // 将当前线程封装成一个 Node 节点,放入 Condition Queue 里面
    private Node addConditionWaiter() {
        // 获取 condition 列队的尾节点,因为需要从尾节点的位置开始插入
        Node t = lastWaiter;
        // If lastWaiter is cancelled, clean out.
        if (t != null && t.waitStatus != Node.CONDITION) {
            // 对 "waitStatus != Node.CONDITION" 的节点进行删除(在Condition里面的Node的waitStatus 要么是CONDITION(正常), 要么就是 0 (signal/timeout/interrupt))
            unlinkCancelledWaiters();
            // 获取最新的 lastWaiter,重新赋值给 t
            t = lastWaiter;
        }
        // 将当前线程封装成一个 CONDITION Node 节点
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        // condition 队列没有元素
        if (t == null)
            // firstWaiter 指向插入的第一个节点 node
            firstWaiter = node;
        else
            // Condition 队列已有元素,在队列尾部插入节点 node
            t.nextWaiter = node;
        // lastWaiter 执行新插入的尾结点元素
        lastWaiter = node;
        return node;
    }
    
    unlinkCancelledWaiters

    一般的节点都会被 signal 唤醒,从 Condition Queue 转移到 Sync Queue,而若遇到 interrupt 或 等待超时,则直接改变 node 的状态(从 CONDITION 变成 0),并直接放入 Sync 里面,而不清理 Condition Queue 里面的节点。

    unlinkCancelledWaiters 方法就是用来清理这些被中断或者超时的节点的。

    private void unlinkCancelledWaiters() {
        Node t = firstWaiter;
        // trail 是整个 Condition Queue 时遇到的最后一个有效的节点
        Node trail = null;
        while (t != null) {
            // 记录 t 的 next 节点
            Node next = t.nextWaiter;
            if (t.waitStatus != Node.CONDITION) {
                // 将 t 从队列中删除
                t.nextWaiter = null;
                // next 是 t 后第一个有效节点
                if (trail == null)
                    // 将 firstWaiter 指向 next
                    firstWaiter = next;
                else
                    trail.nextWaiter = next;
                // 遍历完了
                if (next == null)
                    lastWaiter = trail;
            }
            else
                trail = t;
            t = next;
        }
    }
    
    checkInterruptWhileWaiting
    // signal() 方法被调用后被中断返回
    /** Mode meaning to reinterrupt on exit from wait */
    private static final int REINTERRUPT =  1;
    
    // signal() 方法被调用前被中断返回(会抛出 InterruptedException 异常)
    /** Mode meaning to throw InterruptedException on exit from wait */
    private static final int THROW_IE    = -1;
    
    private int checkInterruptWhileWaiting(Node node) {
        // 判断是否被中断并获取中断模式
        return Thread.interrupted() ?
            (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
        0;
    }
    
    transferAfterCancelledWait
    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            enq(node);
            return true;
        }
        /*
             * If we lost out to a signal(), then we can't proceed
             * until it finishes its enq().  Cancelling during an
             * incomplete transfer is both rare and transient, so just
             * spin.
             */
        while (!isOnSyncQueue(node))
            Thread.yield();
        return false;
    }
    
    reportInterruptAfterWait
    private void reportInterruptAfterWait(int interruptMode)
        throws InterruptedException {
        if (interruptMode == THROW_IE)
            throw new InterruptedException();
        else if (interruptMode == REINTERRUPT)
            selfInterrupt();
    }
    
    signal
    /**
     * Moves the longest-waiting thread, if one exists, from the
     * wait queue for this condition to the wait queue for the
     * owning lock.
     *
     * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
     *         returns {@code false}
     */
    public final void signal() {
        // 当前线程未持有锁,则抛出 IllegalMonitorStateException 异常
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            // 唤醒头结点
            doSignal(first);
    }
    
    doSignal
    /**
     * Removes and transfers nodes until hit non-cancelled one or
     * null. Split out from signal in part to encourage compilers
     * to inline the case of no waiters.
     * @param first (non-null) the first node on condition queue
     */
    private void doSignal(Node first) {
        do {
            // 如果 first 节点的后继节点是 null,说明 condition 队列无元素了,则将 lastWaiter 置为 null
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            // 释放 first 结点(first 节点的后继节点设置为 null)
            first.nextWaiter = null;
        } 
        // 调用 transferForSignal 将 first 节点迁移到 Sync Queue 里面
        // 迁移不成功的话, 重新获取 firstWaiter 并赋值给 first,继续迁移 first 节点
        while (!transferForSignal(first) &&
               (first = firstWaiter) != null);
    }
    
    transferForSignal
    /**
     * Transfers a node from a condition queue onto sync queue.
     * Returns true if successful.
     * @param node the node
     * @return true if successfully transferred (else the node was
     * cancelled before signal)
     */
    final boolean transferForSignal(Node node) {
        /*
         * If cannot change waitStatus, the node has been cancelled.
         */
        // 将节点的 waitStatus 从 CONDITION 修改为 0,
        // 0 是添加到同步队列的节点的初始化状态
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
    
        /*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).
         */
    
        // 将该节点迁移到同步队列尾部,并获取 node 的前序节点赋值给 p
        Node p = enq(node);
        // 获取 node 前序节点的 waitStatus
        int ws = p.waitStatus;
        // node 的前序节点的线程被取消或者将 node 的前序节点状态设置为 Node.SIGNAL 失败
        // 这里为什么需要判断并唤醒线程 ???
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            // 则马上唤醒(被 await 阻塞的) node 节点的线程
            LockSupport.unpark(node.thread);
        return true;
    }
    
    signalAll
    public final void signalAll() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignalAll(first);
    }
    
    doSignalAll
    private void doSignalAll(Node first) {
        // 清空链表节点
        lastWaiter = firstWaiter = null;
        // 从 first 节点开始,将遍历到的所有节点迁移到 sync 阻塞队列中
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);
            first = next;
        } while (first != null);
    }
    
  • 相关阅读:
    MFC中char*,string和CString之间的转换
    图像分割之(四)OpenCV的GrabCut函数使用和源码解读
    自然图像抠图/视频抠像技术发展情况梳理
    OpenCV混合高斯模型函数注释说明
    Effective STL 为包含指针的关联容器指定比较类型
    vs2010修改状态栏的CStatusBar指针的的SetPaneText()方法时死活不对问题
    windows c/c++ 代码运行时间,毫秒级
    【Math】根据置信度、样本数相关推导过程
    宝宝加减法出题小程序
    混淆矩阵
  • 原文地址:https://www.cnblogs.com/wu726/p/15608065.html
Copyright © 2011-2022 走看看