zoukankan      html  css  js  c++  java
  • C++ 实现最大堆排序与最大优先队列

    我一向赞同一个理念: 用代码实现简单逻辑是不需要注释的, 因此我也就不写注释了, 直接上代码: 

    #include <iostream>
    #include <deque>
    #include <limits>
    
    inline int Parent (const int i)
    {
        return std::move( i % 2
            ? (i - 1) / 2
            : (i - 2) / 2);
    }
    
    inline int Left (const int i)
    {
        return std::move(2 * i + 1);
    }
    
    inline int Right (const int i)
    {
        return std::move(2 * i + 2);
    }
    
    void MaxHeapify (std::deque<int> &ideq, int node)
    {
        int largest = node;
        int limit = ideq.size ();
    
        auto SmallerThan = [&] (int child){ return (child < limit) && (ideq[largest] < ideq[child]); };
    
        int leftNode = Left (node);
        if (SmallerThan (leftNode)) {
            largest = leftNode;
        }
    
        int rightNode = Right (node);
        if (SmallerThan (rightNode)) {
            largest = rightNode;
        }
    
        if (largest != node) {
            std::swap (ideq[largest], ideq[node]);
            MaxHeapify (ideq, largest);
        }
    }
    
    std::deque<int>  BuildMaxHeap (std::deque<int> &ideq)
    {
        std::deque<int> heap (ideq);
        for (int i = ideq.size () / 2 - 1; i > -1; --i) {
            MaxHeapify (heap, i);
        }
        return std::move (heap);
    }
    
    void HeapSort (std::deque<int> &ideq)
    {
        auto heap = BuildMaxHeap (std::move(ideq));
        for (int i = ideq.size () - 1; i > -1; --i) {
            ideq[i] = std::move (heap[0]);
            heap.pop_front ();
            MaxHeapify (heap, 0);
        }
    }
    
    int HeapMaximum (std::deque<int> &heap)
    {
        const int topValue = heap[0];
        return std::move(topValue);
    }
    
    int HeapExtractMax (std::deque<int> &heap)
    {
        if (heap.empty()) {
            std::cerr << "heap overfow!
    ";
        }
        int max = std::move(heap[0]);
        heap.pop_front ();
        MaxHeapify (heap, 0);
        return std::move (max);
    }
    
    void 
    HeapIncreaseKey (std::deque<int> &heap, int &&node, int &&key)
    {
        if (key < heap[node]) {
            std::cerr << "This key is smaller than current key!
    ";
        }
        heap[node] = key;
        int parentNode = 0;
        while (( node > 0) && (parentNode = Parent(node), heap[parentNode] < key)){
            std::swap (heap[parentNode], heap[node]);
            node = parentNode;
        }
    }
    
    void MaxHeapInsert (std::deque<int> &heap, int key)
    {
    
        heap.push_back (std::move(std::numeric_limits<int>::min()));
        HeapIncreaseKey (heap, heap.size() - 1, std::move(key));
    }
    
    void Print (const std::deque<int> &ideq)
    {
        for (const auto &elem : ideq) {
            std::cout << elem << " ";
        }
    }
    
    int main ()
    {
        std::ios::sync_with_stdio (false);
        std::deque<int> ideq{ 5, 13, 2, 25, 7, 17, 20, 9, 4};
        auto maxHeap = BuildMaxHeap (ideq);
        HeapIncreaseKey (maxHeap, 0, 30);
        HeapIncreaseKey (maxHeap, maxHeap.size() - 1, 40);
        MaxHeapInsert (maxHeap, 35);
        Print (maxHeap);
        std::cout << std::endl;
        return 0;
    }

    当然还有许多需要改进的地方, 还希望看官多提意见哈~

    泛型的话还需要把 Less<_Ty>(_Ty lhs, _Ty rhs) 抽象出来, 甚至还有 Left<_Ty>(_Ty index), Right<_Ty>(_Ty index) 和 Parent<_Ty>(_Ty) 也要抽象出来. 只是这个博客的目的还是复习这个算法, 所以不作过多讨论.

    当然要只是纯粹练习算法, 还是 python 更爽一些......

    而且我不会说 STL 有个 priority_queue<type> 的......

  • 相关阅读:
    spring-boot配置文件中server.context-path不起作用的解决方案
    SpringBoot常见错误页面,Whitelabel Error Page解决办法(type=Not Found, status=404)
    JPA通用策略生成器(@GeneratedValue 四种标准用法为TABLE, SEQUENCE, IDENTITY, AUTO)
    springBoot+jpa 测试自增时数据库报错Springboot-jpa Table 'sell.hibernate_sequence' doesn't exist
    Java 枚举(enum) 详解7种常见的用法
    IntelliJ IDEA使用教程 (总目录篇)非常详细,适合各个层次的人群学习
    数据库之MySQL数据库视图:视图定义、创建视图、修改视图
    Java日志管理:Logger.getLogger()和LogFactory.getLog()的区别(详解Log4j)
    谷歌浏览器Chrome开发者工具详解
    基本数据类型----字符串
  • 原文地址:https://www.cnblogs.com/wuOverflow/p/4154563.html
Copyright © 2011-2022 走看看