zoukankan      html  css  js  c++  java
  • 实验四 决策树算法及应用


    博客班级 机器学习
    作业要求 作业链接
    作业目标 掌握朴素贝叶斯算法及应用
    学号 3180701214


    1.理解决策树算法原理,掌握决策树算法框架;

    2.理解决策树学习算法的特征选择、树的生成和树的剪枝;

    3.能根据不同的数据类型,选择不同的决策树算法;

    4.针对特定应用场景及数据,能应用决策树算法解决实际问题。

    【实验内容】

    1.设计算法实现熵、经验条件熵、信息增益等方法。

    2.实现ID3算法。

    3.熟悉sklearn库中的决策树算法;

    4.针对iris数据集,应用sklearn的决策树算法进行类别预测。

    5.针对iris数据集,利用自编决策树算法进行类别预测。

    【实验报告要求】

    1.对照实验内容,撰写实验过程、算法及测试结果;

    2.代码规范化:命名规则、注释;

    3.分析核心算法的复杂度;

    4.查阅文献,讨论ID3、5算法的应用场景;

    5.查询文献,分析决策树剪枝策略。

    实验内容

    1.设计算法实现熵、经验条件熵、信息增益等方法。

    Python实现:

    # 熵
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                for p in label_count.values()])
        return ent
    # def entropy(y):
    # """
    # Entropy of a label sequence
    # """
    # hist = np.bincount(y)
    # ps = hist / np.sum(hist)
    # return -np.sum([p * np.log2(p) for p in ps if p > 0])
    # 经验条件熵
    def cond_ent(datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum(
            [(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
        return cond_ent
    # 信息增益
    def info_gain(ent, cond_ent):
        return ent - cond_ent
    def info_gain_train(datasets):
        count = len(datasets[0]) - 1
        ent = calc_ent(datasets)
    # ent = entropy(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
            print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
    

    2.实现ID3算法。


    Python实现:

    # 定义节点类 二叉树
    class Node:
        def __init__(self, root=True, label=None, feature_name=None, feature=None):
            self.root = root
            self.label = label
            self.feature_name = feature_name
            self.feature = feature
            self.tree = {}
            self.result = {
                'label:': self.label,
                'feature': self.feature,
                'tree': self.tree
            }
        def __repr__(self):
            return '{}'.format(self.result)
        def add_node(self, val, node):
            self.tree[val] = node
        def predict(self, features):
            if self.root is True:
                return self.label
            return self.tree[features[self.feature]].predict(features)
    class DTree:
        def __init__(self, epsilon=0.1):
            self.epsilon = epsilon
            self._tree = {}
        # 熵
        @staticmethod
        def calc_ent(datasets):
            data_length = len(datasets)
            label_count = {}
            for i in range(data_length):
                label = datasets[i][-1]
                if label not in label_count:
                    label_count[label] = 0
                label_count[label] += 1
            ent = -sum([(p / data_length) * log(p / data_length, 2)
                        for p in label_count.values()])
            return ent
        # 经验条件熵
        def cond_ent(self, datasets, axis=0):
            data_length = len(datasets)
            feature_sets = {}
            for i in range(data_length):
                feature = datasets[i][axis]
                if feature not in feature_sets:
                    feature_sets[feature] = []
                feature_sets[feature].append(datasets[i])
            cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                            for p in feature_sets.values()])
            return cond_ent
        # 信息增益
        @staticmethod
        def info_gain(ent, cond_ent):
            return ent - cond_ent
        def info_gain_train(self, datasets):
            count = len(datasets[0]) - 1
            ent = self.calc_ent(datasets)
            best_feature = []
            for c in range(count):
                c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
                best_feature.append((c, c_info_gain))
            # 比较大小
            best_ = max(best_feature, key=lambda x: x[-1])
            return best_
        def train(self, train_data):
            """
            input:数据集D(DataFrame格式),特征集A,阈值eta
            output:决策树T
            """
            _, y_train, features = train_data.iloc[:, :
                                                    -1], train_data.iloc[:,
                                                                        -1], train_data.columns[:
                                                                                                -1]
            # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
            if len(y_train.value_counts()) == 1:
                return Node(root=True, label=y_train.iloc[0])
            # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
            if len(features) == 0:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
            max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
            max_feature_name = features[max_feature]
            # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
            if max_info_gain < self.epsilon:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 5,构建Ag子集
            node_tree = Node(
                root=False, feature_name=max_feature_name, feature=max_feature)
            feature_list = train_data[max_feature_name].value_counts().index
            for f in feature_list:
                sub_train_df = train_data.loc[train_data[max_feature_name] ==
                                                f].drop([max_feature_name], axis=1)
                # 6, 递归生成树
                sub_tree = self.train(sub_train_df)
                node_tree.add_node(f, sub_tree)
            # pprint.pprint(node_tree.tree)
            return node_tree
        def fit(self, train_data):
            self._tree = self.train(train_data)
            return self._tree
        def predict(self, X_test):
            return self._tree.predict(X_test)
    

    3.针对iris数据集,应用sklearn的决策树算法进行类别预测。



    4.决策树剪枝策略。

    由于生成的决策树存在过拟合问题,需要对它进行剪枝,以简化学到的决策树。决策树的剪枝,往往从己生成的树上剪掉一些叶结点或叶结点以上的子树,并将其父结点或根结点作为新的叶结点,从而简化生成的决策树。
    

    【实验小结】

    本次实验是关于决策树的算法,其实决策树本质上是从训练数据集中归纳出一组分类规则。在判断一个决策树的性能好坏时,应该关注特征属性的本质和分类性能。决策树虽然也是一个良好的分类算法,但是它也面对一下问题:比如多度拟合,当数据中有噪声或训练样例的数量太少以至于不能产生目标函数的有代表性的采样时。

  • 相关阅读:
    python求余、除法运算、向下圆整、round圆整
    【转】从入门到实践 json练习详解~~和ython : groupby 结果浅解,&之后的 y_list=[v for _,v in y]
    ### 模块“*.dll”已加载,但对DllRegisterServer的调用失败,错误代码为0x80070005
    python从excel里读取数据
    文本文件和二进制文件的区别
    析构函数 声明为protected
    c语言中ln,lg,log的表示。c语言中ln,lg,log的表示。
    js设计模式--创建型--单例模式
    js设计模式--创建型--工厂模式
    解决ElementUI的table组件在flex布局下宽度不能自适应的问题
  • 原文地址:https://www.cnblogs.com/wufan111/p/14954272.html
Copyright © 2011-2022 走看看