zoukankan      html  css  js  c++  java
  • Java——多线程之Lock锁

    Java多线系列文章是Java多线程的详解介绍,对多线程还不熟悉的同学可以先去看一下我的这篇博客Java基础系列3:多线程超详细总结,这篇博客从宏观层面介绍了多线程的整体概况,接下来的几篇文章是对多线程的深入剖析。

    Lock锁

    1、简介

    1、从Java5开始,Java提供了一种功能更强大的线程同步机制——通过显式定义同步锁对象来实现同步,在这种机制下,同步锁由Lock对象充当。

    2、Lock 提供了比synchronized方法和synchronized代码块更广泛的锁定操作,Lock允许实现更灵活的结构,可以具有差别很大的属性,并且支持多个相关的Condition对象。

    3、Lock是控制多个线程对共享资源进行访问的工具。通常,锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,线程开始访问共享资源之前应先获得Lock对象。

    4、某些锁可能允许对共享资源并发访问,如ReadWriteLock(读写锁),Lock、ReadWriteLock是Java5提供的两个根接口,并为Lock 提供了ReentrantLock(可重入锁)实现类,为ReadWriteLock提供了ReentrantReadWriteLock 实现类。

    5、Java8新增了新型的StampedLock类,在大多数场景中它可以替代传统的ReentrantReadWriteLock。ReentrantReadWriteLock 为读写操作提供了三种锁模式:Writing、ReadingOptimistic、Reading。

    2、Lock锁使用

    class X{
    	//定义锁对象
    	private final ReentrantLock lock=new ReentrantLock();
    	
    	//定义需要保证线程安全的方法
    	public void m() {
    		//加锁
    		lock.lock();
    		try {
    			//需要保证线程安全的代码
    		}
    		finally {
    			lock.unlock();
    		}
    	}
    }
    

      

    ReentranLock  

    1、简介

    在Java多线程中,可以使用synchronized关键字来实现线程之间同步互斥,但在JDK1.5中新增加了ReentrantLock类也能达到同样的效果,并且在扩展功能上也更加强大,比如具有嗅探锁定、多路分支通知等功能,而且在使用上也比synchronized更加的灵活。

    2、使用ReentranLock实现同步

    既然ReentrantLock类在功能上相比synchronized更多,那么就以一个初步的程序示例来介绍一下ReentrantLock类的使用。

    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	
    	public void testMethod() {
    		lock.lock();
    		for(int i=0;i<5;i++) {
    			System.out.println("ThreadName= "+Thread.currentThread().getName()+(" "+(i+1)));
    		}
    		lock.unlock();
    	}
    }
    
    class MyThread extends Thread{
    	private MyService service;
    	
    	public MyThread(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.testMethod();
    	}
    }
    
    
    
    public class LockTest {
    	
    	public static void main(String[] args) {
    		MyService service=new MyService();
    		MyThread t1=new MyThread(service);
    		MyThread t2=new MyThread(service);
    		MyThread t3=new MyThread(service);
    		MyThread t4=new MyThread(service);
    		MyThread t5=new MyThread(service);
    		t1.start();
    		t2.start();
    		t3.start();
    		t4.start();
    		t5.start();
    		
    	}
    
    }
    

      

    运行结果:

    ThreadName= Thread-2 1
    ThreadName= Thread-2 2
    ThreadName= Thread-2 3
    ThreadName= Thread-2 4
    ThreadName= Thread-2 5
    ThreadName= Thread-0 1
    ThreadName= Thread-0 2
    ThreadName= Thread-0 3
    ThreadName= Thread-0 4
    ThreadName= Thread-0 5
    ThreadName= Thread-3 1
    ThreadName= Thread-3 2
    ThreadName= Thread-3 3
    ThreadName= Thread-3 4
    ThreadName= Thread-3 5
    ThreadName= Thread-4 1
    ThreadName= Thread-4 2
    ThreadName= Thread-4 3
    ThreadName= Thread-4 4
    ThreadName= Thread-4 5
    ThreadName= Thread-1 1
    ThreadName= Thread-1 2
    ThreadName= Thread-1 3
    ThreadName= Thread-1 4
    ThreadName= Thread-1 5
    

      

    从运行的结果来看,当前线程打印完毕之后将锁进行释放,其他线程才可以继续打印。线程打印的数据是分组打印,因为当前线程已经持有锁,但线程之间打印的顺序是随机的。lock.lock()是对当前线程加锁,当线程执行完毕后调用lock.unlock()释放锁,这时候其他线程可以去获取锁,至于是哪一个线程可以争抢到锁还是看CPU的调度

    3、使用Condition实现等待/通知:错误用法与解决

    关键字synchronized与wait()和notify()/notifyAll()方法相结合可以实现等待/通知模式,类ReentrantLock也可以实现同样的功能,但需要借助于Condition对象。Condition类是在JDK5中出现的技术,使用它有更好的灵活性,比如可以实现多路通知功能,也就是在一个Lock对象里面可以创建多个Condition(即对象监视器)实例,线程对象可以注册在指定的Condition中,从而可以有选择性地进行线程通知,在调度线程上更加灵活。

    在使用notify(O/notifyAll0方法进行通知时,被通知的线程却是由JVM随机选择的。但使用ReentrantLock结合Condition类是可以实现前面介绍过的“选择性通知”,这个功能是非常重要的,而且在Condition类中是默认提供的。

    而synchronized就相当于整个Lock对象中只有一个单一的Condition对象,所有的线程都注册在它一个对象的身上。线程开始notifyAll()时,需要通知所有的WAITING线程,没有选择权,会出现相当大的效率问题。

    package Thread05;
    
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	private Condition condition=lock.newCondition();
    	public void await() {
    		try {
    			lock.lock();
    			System.out.println("A");
    			condition.await();
    			System.out.println("B");
    		}catch(InterruptedException e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    			System.out.println("锁释放了");
    		}
    	}
    }
    
    class MyThread extends Thread{
    	private MyService service;
    	
    	public MyThread(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.await();
    	}
    }
    
    
    
    public class LockTest {
    	
    	public static void main(String[] args) {
    		MyService service=new MyService();
    		MyThread thread=new MyThread(service);
    		thread.start();
    		
    	}
    
    }
    

      

    输出结果:

    A
    

      

    我们可以看到输出结果只有一个A,并没有其他的输出,这是因为调用Condition的await()方法,使当前执行任务的线程进入了等待的状态

    注意:在使用Condition方法时要先调用lock.lock()代码获得同步监视器

    4、正确使用Condition实现等待/通知

    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	private Condition condition=lock.newCondition();
    	public void await() {
    		try {
    			lock.lock();
    			System.out.println("await时间为"+System.currentTimeMillis());
    			condition.await();
    		}catch(InterruptedException e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    			System.out.println("锁释放了");
    		}
    	}
    	
    	public void signal() {
    		try {
    			lock.lock();
    			System.out.println("signal时间为"+System.currentTimeMillis());
    			condition.signal();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    class MyThread extends Thread{
    	private MyService service;
    	
    	public MyThread(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.await();
    	}
    }
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		MyService service=new MyService();
    		MyThread thread=new MyThread(service);
    		thread.start();
    		Thread.sleep(3000);
    		service.signal();
    		
    	}
    
    }
    

      

    运行结果:

    await时间为1575599786039
    signal时间为1575599789051
    锁释放了
    

      

    成功实现等待/通知模式

    Object类中的wait()方法相当于Condition类中的await()方法,Object类中的wait(long timeout)方法相当于Condition类中的await(long time,TimeUnit unit)方法。Object类中的notify()方法相当于Condition类中的signal()方法。Object类中的notifyAll()方法相当于Condition类中的signalAll()方法。

    5、使用多个Condition实现通知所有线程

    前面使用一个Condition对象来实现等待/通知模式,其实Condition对象也可以创建多个。那么一个Condition对象和多个Condition对象在使用上有什么区别呢?

    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	private Condition condition=lock.newCondition();
    	public void awaitA() {
    		try {
    			lock.lock();
    			System.out.println("begin awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    			condition.await();
    			System.out.println("end awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    		}catch(InterruptedException e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	public void awaitB() {
    		try {
    			lock.lock();
    			System.out.println("begin awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    			condition.await();
    			System.out.println("end awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    		}catch(InterruptedException e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	public void signalAll() {
    		try {
    			lock.lock();
    			System.out.println("signalAll时间为"+System.currentTimeMillis());
    			condition.signalAll();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    class MyThreadA extends Thread{
    	private MyService service;
    	
    	public MyThreadA(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.awaitA();
    	}
    }
    
    class MyThreadB extends Thread{
    private MyService service;
    	
    	public MyThreadB(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.awaitB();
    	}
    }
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		MyService service=new MyService();
    		MyThreadA threadA=new MyThreadA(service);
    		threadA.setName("A");
    		threadA.start();
    		MyThreadB threadB=new MyThreadB(service);
    		threadB.setName("B");
    		threadB.start();
    		Thread.sleep(3000);
    		service.signalAll();
    	}
    
    }
    

      

    运行结果:

    begin awaitA时间为1575600904529ThreadNameA
    begin awaitB时间为1575600904545ThreadNameB
    signalAll时间为1575600907537
    end awaitA时间为1575600907537ThreadNameA
    end awaitB时间为1575600907537ThreadNameB
    

      

    6、使用多个Condition实现通知部分线程

    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	private Condition conditionA=lock.newCondition();
    	private Condition conditionB=lock.newCondition();
    	public void awaitA() {
    		try {
    			lock.lock();
    			System.out.println("begin awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    			conditionA.await();
    			System.out.println("end awaitA时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    		}catch(InterruptedException e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	public void awaitB() {
    		try {
    			lock.lock();
    			System.out.println("begin awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    			conditionB.await();
    			System.out.println("end awaitB时间为"+System.currentTimeMillis()+"ThreadName"+Thread.currentThread().getName());
    		}catch(InterruptedException e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	//通知A
    	public void signalAll_A() {
    		try {
    			lock.lock();
    			System.out.println("signalAll_A时间为"+System.currentTimeMillis()+"ThreadName="+Thread.currentThread().getName());
    			conditionA.signalAll();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	//通知B
    	public void signalAll_B() {
    		try {
    			lock.lock();
    			System.out.println("signalAll_A时间为"+System.currentTimeMillis()+"ThreadName="+Thread.currentThread().getName());
    			conditionA.signalAll();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    class MyThreadA extends Thread{
    	private MyService service;
    	
    	public MyThreadA(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.awaitA();
    	}
    }
    
    class MyThreadB extends Thread{
    private MyService service;
    	
    	public MyThreadB(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.awaitB();
    	}
    }
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		MyService service=new MyService();
    		MyThreadA threadA=new MyThreadA(service);
    		threadA.setName("A");
    		threadA.start();
    		MyThreadB threadB=new MyThreadB(service);
    		threadB.setName("B");
    		threadB.start();
    		Thread.sleep(3000);
    		service.signalAll_A();
    	}
    
    }
    

      

    运行结果:

    begin awaitA时间为1575601785167ThreadNameA
    begin awaitB时间为1575601785167ThreadNameB
    signalAll_A时间为1575601788181ThreadName=main
    end awaitA时间为1575601788181ThreadNameA
    

      

    上面的代码实现通知部分线程,定义了两个Condition,在测试类中只是唤醒了A,从输出结果可以看出,线程A被唤醒了,线程B依然处于等待状态

    7、实现生产者/消费者模式:一个生产者一个消费者

    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	private Condition condition=lock.newCondition();
    	private boolean hasValue=false;
    	public void set() {
    		try {
    			lock.lock();
    			while(hasValue==true) {
    				condition.await();
    			}
    			System.out.println("打印★");
    			hasValue=true;
    			condition.signal();
    		}catch(Exception e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	public void get() {
    		try {
    			lock.lock();
    			while(hasValue==false) {
    				condition.await();
    			}
    			System.out.println("打印☆");
    			hasValue=false;
    			condition.signal();
    		}catch(Exception e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    class MyThreadA extends Thread{
    	private MyService service;
    	
    	public MyThreadA(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		for(int i=0;i<Integer.MAX_VALUE;i++) {
    			service.set();	
    		}
    		
    	}
    }
    
    class MyThreadB extends Thread{
    private MyService service;
    	
    	public MyThreadB(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		for(int i=0;i<Integer.MAX_VALUE;i++) {
    			service.get();	
    		}
    	}
    }
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		MyService service=new MyService();
    		MyThreadA a=new MyThreadA(service);
    		a.start();
    		MyThreadB b=new MyThreadB(service);
    		b.start();
    	}
    
    }
    

      

    运行结果:

     上面代码实现了生产者消费者的功能,一个生产一个消费,如果hasValue=false相当于生产者没有生产产品,当前没有可消费的产品,所以调用生产者生产,当hasValue=true说明当前有产品还没有被消费,那么生产者应该停止生产,调用消费者消费

    8、实现生产者/消费者模式:多个生产者多个消费者

    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    class MyService{
    	private Lock lock=new ReentrantLock();
    	private Condition condition=lock.newCondition();
    	private boolean hasValue=false;
    	public void set() {
    		try {
    			lock.lock();
    			while(hasValue==true) {
    				System.out.println("有可能★★连续");
    				condition.await();
    			}
    			System.out.println("打印★");
    			hasValue=true;
    			condition.signal();
    		}catch(Exception e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    	
    	public void get() {
    		try {
    			lock.lock();
    			while(hasValue==false) {
    				System.out.println("有可能☆☆连续");
    				condition.await();
    			}
    			System.out.println("打印☆");
    			hasValue=false;
    			condition.signal();
    		}catch(Exception e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    class MyThreadA extends Thread{
    	private MyService service;
    	
    	public MyThreadA(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		for(int i=0;i<Integer.MAX_VALUE;i++) {
    			service.set();	
    		}
    		
    	}
    }
    
    class MyThreadB extends Thread{
    private MyService service;
    	
    	public MyThreadB(MyService service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		for(int i=0;i<Integer.MAX_VALUE;i++) {
    			service.get();	
    		}
    	}
    }
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		MyService service=new MyService();
    		MyThreadA[] threadA=new MyThreadA[10];
    		MyThreadB[] threadB=new MyThreadB[10];
    		for(int i=0;i<10;i++) {
    			threadA[i]=new MyThreadA(service);
    			threadB[i]=new MyThreadB(service);
    			threadA[i].start();
    			threadB[i].start();
    		}
    	}
    
    }
    

      

    运行结果:

     运行程序后出现了假死,因为出现了生产者释放生产者或者消费者释放消费者的情况,那么该如何解决这个问题呢?在使用synchronized实现生产者消费者的时候我们也遇到过这种情况,当时是使用notifyAll()来解决这个问题的,那么现在使用锁我们则用signalAll()方法来解决死锁问题,将上述代码中signal()方法改成signalAll()即可

    修改后程序运行结果如下

     程序一直正常运行,没有出现死锁情况

    9、公平锁和非公平锁

    公平与非公平锁:锁Lock分为“公平锁”和“非公平锁”,公平锁表示线程获取锁的顺序是按照线程加锁的顺序来分配的,即先来先得的FIFO先进先出顺序。而非公平锁就是一种获取锁的抢占机制,是随机获得锁的,和公平锁不一样的就是先来的不一定先得到锁,这个方式可能造成某些线程一直拿不到锁,结果也就是不公平的了。

    创建公平锁和非公平锁ReentrantLock lock=new ReentrantLock(boolean a),创建锁时如果a为true的话,则创建的是公平锁,如果a为false的话,则创建的是非公平锁

    公平锁

    import java.util.concurrent.locks.ReentrantLock;
    
    class Service{
    	private ReentrantLock lock;
    	public Service(boolean isFair) {
    		lock=new ReentrantLock(isFair);
    	}
    	
    	public void serviceMethod() {
    		try {
    			lock.lock();
    			System.out.println("ThreadName="+Thread.currentThread().getName()+"获得锁定");
    		}catch(Exception e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		final Service service=new Service(true);
    		Runnable runnable=new Runnable() {
    			
    			@Override
    			public void run() {
    				System.out.println("★线程"+Thread.currentThread().getName()+"运行了");
    				service.serviceMethod();
    			}
    		};
    		Thread[] threadArray=new Thread[10];
    		for(int i=0;i<10;i++) {
    			threadArray[i]=new Thread(runnable);
    		}
    		for(int i=0;i<10;i++) {
    			threadArray[i].start();
    		}
    		
    	}
    
    }
    

      

    运行结果:

    ★线程Thread-2运行了
    ★线程Thread-3运行了
    ★线程Thread-0运行了
    ★线程Thread-9运行了
    ★线程Thread-4运行了
    ★线程Thread-8运行了
    ★线程Thread-5运行了
    ★线程Thread-1运行了
    ★线程Thread-6运行了
    ★线程Thread-7运行了
    ThreadName=Thread-2获得锁定
    ThreadName=Thread-6获得锁定
    ThreadName=Thread-1获得锁定
    ThreadName=Thread-8获得锁定
    ThreadName=Thread-0获得锁定
    ThreadName=Thread-7获得锁定
    ThreadName=Thread-5获得锁定
    ThreadName=Thread-3获得锁定
    ThreadName=Thread-9获得锁定
    ThreadName=Thread-4获得锁定
    

      

    结果显示输出基本是呈有序的状态,这就是公平锁的特点

    非公平锁

    import java.util.concurrent.locks.ReentrantLock;
    
    class Service{
    	private ReentrantLock lock;
    	public Service(boolean isFair) {
    		lock=new ReentrantLock(isFair);
    	}
    	
    	public void serviceMethod() {
    		try {
    			lock.lock();
    			System.out.println("ThreadName="+Thread.currentThread().getName()+"获得锁定");
    		}catch(Exception e) {
    			e.printStackTrace();
    		}finally {
    			lock.unlock();
    		}
    	}
    }
    
    
    
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		final Service service=new Service(false);
    		Runnable runnable=new Runnable() {
    			
    			@Override
    			public void run() {
    				System.out.println("★线程"+Thread.currentThread().getName()+"运行了");
    				service.serviceMethod();
    			}
    		};
    		Thread[] threadArray=new Thread[10];
    		for(int i=0;i<10;i++) {
    			threadArray[i]=new Thread(runnable);
    		}
    		for(int i=0;i<10;i++) {
    			threadArray[i].start();
    		}
    		
    	}
    
    }
    

      

    运行结果:

    ★线程Thread-2运行了
    ★线程Thread-9运行了
    ★线程Thread-7运行了
    ★线程Thread-0运行了
    ★线程Thread-3运行了
    ★线程Thread-1运行了
    ★线程Thread-6运行了
    ★线程Thread-5运行了
    ★线程Thread-4运行了
    ThreadName=Thread-1获得锁定
    ★线程Thread-8运行了
    ThreadName=Thread-8获得锁定
    ThreadName=Thread-2获得锁定
    ThreadName=Thread-7获得锁定
    ThreadName=Thread-5获得锁定
    ThreadName=Thread-3获得锁定
    ThreadName=Thread-4获得锁定
    ThreadName=Thread-9获得锁定
    ThreadName=Thread-0获得锁定
    ThreadName=Thread-6获得锁定
    

      

    非公平锁的运行结果基本上是乱序的,说明先start()启动的线程不代表先获得锁

    10、ReentranLock方法概述:

    (1)、int getHoldCount()

      getHoldCount()的作用是查询当前线程保持此锁定的个数,也就是调用lock()方法的次数。

    (2)、int getQueueLength()

      getQueueLength()的作用是返回正等待获取此锁定的线程估计数,比如有5个线程,1个线程首先执行awai()方法,那么在调用getQueueLength()方法后返回值是4,说明有4个线程同时在等待lock的释放。

    (3)、int getWaitQueueLength(Condition condition)

      getWaitQueueLength(Condition condition)的作用是返回等待与此锁定相关的给定条件Condition的线程估计数,比如有5个线程,每个线程都执行了同一个condition对象的await()方法,则调用getWaitQueueLength(Condition condition)方法时返回的int值是5。

    (4)、boolean hasQueuedThread(Thread thread)

      hasQueuedThread(Thread thread)的作用是查询指定的线程是否正在等待获取此锁定

      hasQueuedThreads()的作用是查询是否有线程正在等待获取此锁定。

    (5)、boolean hasWaiters(Condition condition)

      hasWaiters(Condition condition)的作用是查询是否有线程正在等待与此锁定有关的condition条件。

    (6)、boolean isFair()

      isFair()的作用是判断是不是公平锁

    (7)、boolean isHeldByCurrentThread()

      isHeldByCurrentThread的作用是查询当前线程是否保持此锁定

    (8)、boolean isLocked()

      isLocked()的作用是查询此锁定是否由任意的线程保持

    ReentrantReadWriteLock

    类ReentrantLock具有完全互斥排他的效果,即同一时间只有一个线程在执行ReentrantLock.lock()方法后面的任务。这样做虽然保证了实例变量的线程安全性,但效率却是非常低下的。所以在JDK中提供了一种读写锁ReentrantReadWriteLock类,使用它可以加快运行效率,在某些不需要操作实例变量的方法中,完全可以使用读写锁ReentrantReadWriteLock 来提升该方法的代码运行速度。

    读写锁表示也有两个锁,一个是读操作相关的锁,也称为共享锁;另一个是写操作相关的锁,也叫排他锁。也就是多个读锁之间不互斥,读锁与写锁互斥,写锁与写锁互斥。在没有线程Thread进行写入操作时,进行读取操作的多个Thread都可以获取读锁,而进行写入操作的Thread只有在获取写锁后才能进行写入操作。即多个Thread可以同时进行读取操作,但是同一时刻只允许一个Thread进行写入操作。

    一、ReentrantReadWriteLock读读共享

    import java.util.concurrent.locks.ReentrantReadWriteLock;
    
    class Service{
    	private ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
    	
    	public void read() {
    		try {
    			try {
    				lock.readLock().lock();
    				System.out.println("获取读锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
    				Thread.sleep(10000);
    			}finally {
    				lock.readLock().unlock();
    			}
    		}catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }
    
    
    class MyThreadA extends Thread{
    	private Service service;
    	
    	public MyThreadA(Service service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.read();
    	}
    }
    
    class MyThreadB extends Thread{
    	private Service service;
    	
    	public MyThreadB(Service service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.read();
    	}
    }
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		Service service=new Service();
    		MyThreadA a=new MyThreadA(service);
    		a.setName("A");
    		MyThreadB b=new MyThreadB(service);
    		b.setName("B");
    		a.start();
    		b.start();
    	}
    
    }
    

      

    运行结果:

    获取读锁A 1575611161158
    获取读锁B 1575611161158
    

      

    从输出结果打印的时间来看,两个线程几乎同时进入lock()方法后面的代码。说明在此使用了lock.readLock()读锁可以提高程序运行效率,允许多个线程同时执行lock()方法后面的代码。

    二、ReentrantReadWriteLock写写互斥

    import java.util.concurrent.locks.ReentrantReadWriteLock;
    
    class Service{
    	private ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
    	
    	public void write() {
    		try {
    			try {
    				lock.writeLock().lock();
    				System.out.println("获取写锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
    				Thread.sleep(10000);
    			}finally {
    				lock.writeLock().unlock();
    			}
    		}catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }
    
    
    class MyThreadA extends Thread{
    	private Service service;
    	
    	public MyThreadA(Service service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.write();
    	}
    }
    
    class MyThreadB extends Thread{
    	private Service service;
    	
    	public MyThreadB(Service service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.write();
    	}
    }
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		Service service=new Service();
    		MyThreadA a=new MyThreadA(service);
    		a.setName("A");
    		MyThreadB b=new MyThreadB(service);
    		b.setName("B");
    		a.start();
    		b.start();
    	}
    
    }
    

      

    运行结果:

    获取写锁B 1575611458260
    获取写锁A 1575611468273
    

      

    结果显示写锁的效果是同一时间只允许一个线程执行lock()后面的代码

    三、ReentrantReadWriteLock读写互斥

    import java.util.concurrent.locks.ReentrantReadWriteLock;
    
    class Service{
    	private ReentrantReadWriteLock lock=new ReentrantReadWriteLock();
    	
    	public void read() {
    		try {
    			try {
    				lock.readLock().lock();
    				System.out.println("获取读锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
    				Thread.sleep(10000);
    			}finally {
    				lock.readLock().unlock();
    			}
    		}catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    	
    	public void write() {
    		try {
    			try {
    				lock.writeLock().lock();
    				System.out.println("获取写锁"+Thread.currentThread().getName()+" "+System.currentTimeMillis());
    				Thread.sleep(10000);
    			}finally {
    				lock.writeLock().unlock();
    			}
    		}catch(Exception e) {
    			e.printStackTrace();
    		}
    	}
    }
    
    
    class MyThreadA extends Thread{
    	private Service service;
    	
    	public MyThreadA(Service service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.read();
    	}
    }
    
    class MyThreadB extends Thread{
    	private Service service;
    	
    	public MyThreadB(Service service) {
    		this.service=service;
    	}
    	
    	@Override
    	public void run() {
    		service.write();
    	}
    }
    
    public class LockTest {
    	
    	public static void main(String[] args) throws InterruptedException {
    		Service service=new Service();
    		MyThreadA a=new MyThreadA(service);
    		a.setName("A");
    		MyThreadB b=new MyThreadB(service);
    		b.setName("B");
    		a.start();	
    		b.start();
    	}
    
    }
    

      

    运行结果:

    获取读锁A 1575611689661
    获取写锁B 1575611699665
    

      

    从读写的时间上可以看出读写的操作时互斥的

  • 相关阅读:
    (整理)REHL6.5_Yum安装Reids
    (整理)REHL6.5_安装本地yum
    (转)MSSQLSERVER执行计划详解
    (转)SQLServer_十步优化SQL Server中的数据访问四
    (转)SQLServer_十步优化SQL Server中的数据访问五
    (转)SQLServer_十步优化SQL Server中的数据访问 三
    (转)SQLServer_十步优化SQL Server中的数据访问 二
    (转)SQLServer_十步优化SQL Server中的数据访问一
    (转)EF5+SQLserver2012迁移到EF6+mysql5.5.47
    (整理)MySQL_REHL6.5 MySQL5.5 中文支持问题
  • 原文地址:https://www.cnblogs.com/wugongzi/p/11994825.html
Copyright © 2011-2022 走看看