zoukankan      html  css  js  c++  java
  • 这里有一份TensorFlow2.0中文教程

    今年 3 月份,谷歌在 Tensorflow Developer Summit 2019 大会上发布 TensorFlow 2.0 Alpha 版。作为当前最为流行的深度学习框架,2.0 Alpha 版的正式发布引人关注。近两个月,网上已经出现了大量 TensorFlow 2.0 英文教程。在此文章中,机器之心为大家推荐一个持续更新的中文教程,以便大家学习。
    英文教程太难啃?这里有一份TensorFlow2.0中文教程

     

    虽然,自 TensorFlow 2.0 发布以来,我们总是能够听到「TensorFlow 2.0 就是 keras」、「说的很好,但我用 PyTorch」类似的吐槽。但毋庸置疑,TensorFlow 依然是当前最主流的深度学习框架(感兴趣的读者可查看机器之心文章:2019 年,TensorFlow 被拉下马了吗?)。

    整体而言,为了吸引用户,TensorFlow 2.0 从简单、强大、可扩展三个层面进行了重新设计。特别是在简单化方面,TensorFlow 2.0 提供更简化的 API、注重 Keras、结合了 Eager execution。

    过去一段时间,机器之心为大家编译介绍了部分英文教程,例如:

    • 如何在 TensorFlow 2.0 中构建强化学习智能体
    • TensorFlow 2.0 到底怎么样?简单的图像分类任务探一探

     

    此文章中,机器之心为大家推荐一个持续更新的中文教程,方便大家更系统的学习、使用 TensorFlow 2.0 :

    • 知乎专栏地址:https://zhuanlan.zhihu.com/c_1091021863043624960
    • Github 项目地址:https://github.com/czy36mengfei/tensorflow2_tutorials_chinese

     

    该教程是 NLP 爱好者 Doit 在知乎上开的一个专栏,由作者从 TensorFlow2.0 官方教程的个人学习复现笔记整理而来。作者将此教程分为了三类:TensorFlow 2.0 基础教程、TensorFlow 2.0 深度学习实践、TensorFlow 2.0 基础网络结构。

    以基础教程为例,作者整理了 Keras 快速入门教程、eager 模式、Autograph 等。目前为止,该中文教程已经包含 20 多篇文章,作者还在持续更新中,感兴趣的读者可以 follow。

    英文教程太难啃?这里有一份TensorFlow2.0中文教程

     

     

    英文教程太难啃?这里有一份TensorFlow2.0中文教程

    该中文教程当前目录

    以下是作者整理的「Keras 快速入门」教程内容。

    Keras 快速入门

    Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产。

    keras 的 3 个优点: 方便用户使用、模块化和可组合、易于扩展

    1. 导入 tf.keras

    tensorflow2 推荐使用 keras 构建网络,常见的神经网络都包含在 keras.layer 中 (最新的 tf.keras 的版本可能和 keras 不同)

    import tensorflow as tf
    from tensorflow.keras import layers
    print(tf.__version__)
    print(tf.keras.__version__)

     

    2. 构建简单模型

    2.1 模型堆叠

    最常见的模型类型是层的堆叠:tf.keras.Sequential 模型

    model = tf.keras.Sequential()
    model.add(layers.Dense(32, activation='relu'))
    model.add(layers.Dense(32, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))

    2.2 网络配置

    tf.keras.layers 中网络配置:

    • activation:设置层的激活函数。此参数由内置函数的名称指定,或指定为可调用对象。默认情况下,系统不会应用任何激活函数。
    • kernel_initializer 和 bias_initializer:创建层权重(核和偏差)的初始化方案。此参数是一个名称或可调用对象,默认为 "Glorot uniform" 初始化器。
    • kernel_regularizer 和 bias_regularizer:应用层权重(核和偏差)的正则化方案,例如 L1 或 L2 正则化。默认情况下,系统不会应用正则化函数。

     

    layers.Dense(32, activation='sigmoid')
    layers.Dense(32, activation=tf.sigmoid)
    layers.Dense(32, kernel_initializer='orthogonal')
    layers.Dense(32, kernel_initializer=tf.keras.initializers.glorot_normal)
    layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l2(0.01))
    layers.Dense(32, kernel_regularizer=tf.keras.regularizers.l1(0.01))

    3. 训练和评估

    3.1 设置训练流程

    构建好模型后,通过调用 compile 方法配置该模型的学习流程:

    model = tf.keras.Sequential()
    model.add(layers.Dense(32, activation='relu'))
    model.add(layers.Dense(32, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
    model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
    loss=tf.keras.losses.categorical_crossentropy,
    metrics=[tf.keras.metrics.categorical_accuracy])

    3.2 输入 Numpy 数据

    import numpy as np
    train_x = np.random.random((1000, 72))
    train_y = np.random.random((1000, 10))
    val_x = np.random.random((200, 72))
    val_y = np.random.random((200, 10))
    model.fit(train_x, train_y, epochs=10, batch_size=100,
    validation_data=(val_x, val_y))

    3.3tf.data 输入数据

    dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y))
    dataset = dataset.batch(32)
    dataset = dataset.repeat()
    val_dataset = tf.data.Dataset.from_tensor_slices((val_x, val_y))
    val_dataset = val_dataset.batch(32)
    val_dataset = val_dataset.repeat()
    model.fit(dataset, epochs=10, steps_per_epoch=30,
    validation_data=val_dataset, validation_steps=3)

    3.4 评估与预测

    test_x = np.random.random((1000, 72))
    test_y = np.random.random((1000, 10))
    model.evaluate(test_x, test_y, batch_size=32)
    test_data = tf.data.Dataset.from_tensor_slices((test_x, test_y))
    test_data = test_data.batch(32).repeat()
    model.evaluate(test_data, steps=30)
    # predict
    result = model.predict(test_x, batch_size=32)
    print(result)

    4. 构建高级模型

    4.1 函数式 api

    tf.keras.Sequential 模型是层的简单堆叠,无法表示任意模型。使用 Keras 函数式 API 可以构建复杂的模型拓扑,例如:

    • 多输入模型,
    • 多输出模型,
    • 具有共享层的模型(同一层被调用多次),
    • 具有非序列数据流的模型(例如,残差连接)。

     

    使用函数式 API 构建的模型具有以下特征:

    • 层实例可调用并返回张量。
    • 输入张量和输出张量用于定义 tf.keras.Model 实例。
    • 此模型的训练方式和 Sequential 模型一样。
    input_x = tf.keras.Input(shape=(72,))
    hidden1 = layers.Dense(32, activation='relu')(input_x)
    hidden2 = layers.Dense(16, activation='relu')(hidden1)
    pred = layers.Dense(10, activation='softmax')(hidden2)
    model = tf.keras.Model(inputs=input_x, outputs=pred)
    model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
    loss=tf.keras.losses.categorical_crossentropy,
    metrics=['accuracy'])
    model.fit(train_x, train_y, batch_size=32, epochs=5)

     

    4.2 模型子类化

    通过对 tf.keras.Model 进行子类化并定义您自己的前向传播来构建完全可自定义的模型。在 init 方法中创建层并将它们设置为类实例的属性。在 call 方法中定义前向传播

    class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
    super(MyModel, self).__init__(name='my_model')
    self.num_classes = num_classes
    self.layer1 = layers.Dense(32, activation='relu')
    self.layer2 = layers.Dense(num_classes, activation='softmax')
    def call(self, inputs):
    h1 = self.layer1(inputs)
    out = self.layer2(h1)
    return out
    def compute_output_shape(self, input_shape):
    shape = tf.TensorShapej(input_shape).as_list()
    shape[-1] = self.num_classes
    return tf.TensorShape(shape)
    model = MyModel(num_classes=10)
    model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
    loss=tf.keras.losses.categorical_crossentropy,
    metrics=['accuracy'])
    model.fit(train_x, train_y, batch_size=16, epochs=5)

     

    4.3 自定义层

    通过对 tf.keras.layers.Layer 进行子类化并实现以下方法来创建自定义层:

    • build:创建层的权重。使用 add_weight 方法添加权重。
    • call:定义前向传播。
    • compute_output_shape:指定在给定输入形状的情况下如何计算层的输出形状。或者,可以通过实现 get_config 方法和 from_config 类方法序列化层。

     

    class MyLayer(layers.Layer):
    def __init__(self, output_dim, **kwargs):
    self.output_dim = output_dim
    super(MyLayer, self).__init__(**kwargs)
    def build(self, input_shape):
    shape = tf.TensorShape((input_shape[1], self.output_dim))
    self.kernel = self.add_weight(name='kernel1', shape=shape,
    initializer='uniform', trainable=True)
    super(MyLayer, self).build(input_shape)
    def call(self, inputs):
    return tf.matmul(inputs, self.kernel)
    def compute_output_shape(self, input_shape):
    shape = tf.TensorShape(input_shape).as_list()
    shape[-1] = self.output_dim
    return tf.TensorShape(shape)
    def get_config(self):
    base_config = super(MyLayer, self).get_config()
    base_config['output_dim'] = self.output_dim
    return base_config
    @classmethod
    def from_config(cls, config):
    return cls(**config)
    model = tf.keras.Sequential(
    [
    MyLayer(10),
    layers.Activation('softmax')
    ])
    model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
    loss=tf.keras.losses.categorical_crossentropy,
    metrics=['accuracy'])
    model.fit(train_x, train_y, batch_size=16, epochs=5)

     

    4.4 回调

    callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
    tf.keras.callbacks.TensorBoard(log_dir='./logs')
    ]
    model.fit(train_x, train_y, batch_size=16, epochs=5,
    callbacks=callbacks, validation_data=(val_x, val_y))

     

    5 保持和恢复

    5.1 权重保存

    model = tf.keras.Sequential([
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')])
    model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
    loss='categorical_crossentropy',
    metrics=['accuracy'])
    model.save_weights('./weights/model')
    model.load_weights('./weights/model')
    model.save_weights('./model.h5')
    model.load_weights('./model.h5')

     

    5.2 保存网络结构

    # 序列化成json
    import json
    import pprint
    json_str = model.to_json()
    pprint.pprint(json.loads(json_str))
    fresh_model = tf.keras.models.model_from_json(json_str)
    # 保持为yaml格式 #需要提前安装pyyaml
    yaml_str = model.to_yaml()
    print(yaml_str)
    fresh_model = tf.keras.models.model_from_yaml(yaml_str)

     

    5.3 保存整个模型

    model = tf.keras.Sequential([
    layers.Dense(10, activation='softmax', input_shape=(72,)),
    layers.Dense(10, activation='softmax')
    ])
    model.compile(optimizer='rmsprop',
    loss='categorical_crossentropy',
    metrics=['accuracy'])
    model.fit(train_x, train_y, batch_size=32, epochs=5)
    model.save('all_model.h5')
    model = tf.keras.models.load_model('all_model.h5')

     

    6. 将 keras 用于 Estimator

    Estimator API 用于针对分布式环境训练模型。它适用于一些行业使用场景,例如用大型数据集进行分布式训练并导出模型以用于生产

    model = tf.keras.Sequential([layers.Dense(10,activation='softmax'),
    layers.Dense(10,activation='softmax')])
    model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
    loss='categorical_crossentropy',
    metrics=['accuracy'])
    estimator = tf.keras.estimator.model_to_estimator(model)
  • 相关阅读:
    iOS----------弹窗动画
    书单
    如何屏蔽垃圾短信
    2018年IOS/Android UI设计规范
    关于Keychain
    OpenUDID 和 IDFA 比较
    iOS-----------关于UDID
    iOS-----------设置自定义字体
    【2020Python修炼记】前端开发之 JavaScript 基础
    【2020Python修炼记】前端开发之 CSS基础布局
  • 原文地址:https://www.cnblogs.com/wuhh123/p/10838171.html
Copyright © 2011-2022 走看看