题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 33 种果子,数目依次为 11 , 22 , 99 。可以先将 11 、 22 堆合并,新堆数目为 33 ,耗费体力为 33 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212 ,耗费体力为 1212 。所以多多总共耗费体力 =3+12=15=3+12=15 。可以证明 1515 为最小的体力耗费值。
输入输出格式
输入格式:
共两行。
第一行是一个整数 n(1leq nleq 10000)n(1≤n≤10000) ,表示果子的种类数。
第二行包含 nn 个整数,用空格分隔,第 ii 个整数 a_i(1leq a_ileq 20000)a
i
(1≤a
i
≤20000) 是第 ii 种果子的数目。
输出格式:
一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^{31}2
31
。
输入输出样例
输入样例#1: 复制
3
1 2 9
输出样例#1: 复制
15
说明
对于30%的数据,保证有n le 1000n≤1000:
对于50%的数据,保证有n le 5000n≤5000;
对于全部的数据,保证有n le 10000n≤10000。
#include<cstdio> #include<iostream> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> #include<queue> typedef long long ll; using namespace std; priority_queue<int,vector<int>,greater<int> >a; //建一个小根堆 int n,x,y,ans; int main(){ //freopen("1090.in","r",stdin); //freopen("1090.out","w",stdout); cin>>n; for(int i=1;i<=n;i++){ scanf("%d",&x); a.push(x);//入列 } for(int i=1;i<n;i++){ x=a.top(); a.pop();//最小,出列 y=a.top(); a.pop();//次小,出列 ans+=x+y; a.push(x+y);//将合并后的时间入列 } cout<<ans; return 0; }