zoukankan      html  css  js  c++  java
  • 【SPOJ 10606】Balanced Numbers

    BALNUM - Balanced Numbers

    no tags 

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4

    题解:救救孩子吧,肝不动了,数位 DP

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #define FOR(i,a,b) for(int i=a;i<=b;++i)
    #define clr(f,z) memset(f,z,sizeof(f))
    typedef long long LL;
    using namespace std;
    LL dp[20][60000];
    int bit[20],num[20];
    bool check(int x)
    {
      int pos=0;
      while(x)
      {
        num[pos++]=x%3;
        x/=3;
      }
      FOR(i,0,pos-1)
      if(i%2==0&&num[i]==2)return 0;
      else if(i%2==1&&num[i]==1)return 0;
      return 1;
    }
    int turn(int s,int x)
    { int pos=0;
      clr(num,0);
      while(s)
      {
        num[pos++]=s%3;
        s/=3;
      }
      if(num[x]==0)++num[x];
      else num[x]=3-num[x];
      int z=max(x,pos-1);
      s=0;
      for(int i=z;i>=0;--i)
        {
          s=s*3+num[i];
        }
        return s;
    }
    LL DP(int pp,int s,bool nozero,bool big)
    {
      if(pp==0)return check(s);
      if(big&&dp[pp][s]!=-1)return dp[pp][s];
      int kn=big?9:bit[pp];
      LL ret=0;
      FOR(i,0,kn)
      {
        ret+=DP(pp-1,(nozero||i!=0)?turn(s,i):0,nozero||i!=0,big||kn!=i);
      }
      if(big)dp[pp][s]=ret;
      return ret;
    }
    LL get(LL x)
    { int pos=0;
     
      while(x)
      {
        bit[++pos]=x%10;x/=10;
      }
      return DP(pos,0,0,0);
    }
    int main()
    {
      LL a,b;
      int cas;clr(dp,-1);
      while(~scanf("%d",&cas))
      {
        while(cas--)
        {
          scanf("%lld%lld",&a,&b);
          printf("%lld
    ",get(b)-get(a-1));
        }
      }
      return 0;
    }
  • 相关阅读:
    day 67 Django的view 与路由
    day65 Django模板语言
    day64 views文件
    day 64 Django 第五天 多表对多表的对应关系ORM
    Day 62 Django第三天
    Day 61 Django第二天 (orm数据库操作)
    day 60 Django第一天
    day 59 pymysql
    day 58
    三个按钮作业
  • 原文地址:https://www.cnblogs.com/wuhu-JJJ/p/11249048.html
Copyright © 2011-2022 走看看