zoukankan      html  css  js  c++  java
  • 【SPOJ 10606】Balanced Numbers

    BALNUM - Balanced Numbers

    no tags 

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1)      Every even digit appears an odd number of times in its decimal representation

    2)      Every odd digit appears an even number of times in its decimal representation

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    Input

    The first line contains an integer T representing the number of test cases.

    A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

    Output

    For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

    Example

    Input:
    2
    1 1000
    1 9
    Output:
    147
    4

    题解:救救孩子吧,肝不动了,数位 DP

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #define FOR(i,a,b) for(int i=a;i<=b;++i)
    #define clr(f,z) memset(f,z,sizeof(f))
    typedef long long LL;
    using namespace std;
    LL dp[20][60000];
    int bit[20],num[20];
    bool check(int x)
    {
      int pos=0;
      while(x)
      {
        num[pos++]=x%3;
        x/=3;
      }
      FOR(i,0,pos-1)
      if(i%2==0&&num[i]==2)return 0;
      else if(i%2==1&&num[i]==1)return 0;
      return 1;
    }
    int turn(int s,int x)
    { int pos=0;
      clr(num,0);
      while(s)
      {
        num[pos++]=s%3;
        s/=3;
      }
      if(num[x]==0)++num[x];
      else num[x]=3-num[x];
      int z=max(x,pos-1);
      s=0;
      for(int i=z;i>=0;--i)
        {
          s=s*3+num[i];
        }
        return s;
    }
    LL DP(int pp,int s,bool nozero,bool big)
    {
      if(pp==0)return check(s);
      if(big&&dp[pp][s]!=-1)return dp[pp][s];
      int kn=big?9:bit[pp];
      LL ret=0;
      FOR(i,0,kn)
      {
        ret+=DP(pp-1,(nozero||i!=0)?turn(s,i):0,nozero||i!=0,big||kn!=i);
      }
      if(big)dp[pp][s]=ret;
      return ret;
    }
    LL get(LL x)
    { int pos=0;
     
      while(x)
      {
        bit[++pos]=x%10;x/=10;
      }
      return DP(pos,0,0,0);
    }
    int main()
    {
      LL a,b;
      int cas;clr(dp,-1);
      while(~scanf("%d",&cas))
      {
        while(cas--)
        {
          scanf("%lld%lld",&a,&b);
          printf("%lld
    ",get(b)-get(a-1));
        }
      }
      return 0;
    }
  • 相关阅读:
    白钰铭的第九次作业
    白钰铭的第八次作业
    第七次作业
    白钰铭的第六次作业
    白钰铭的第五次作业
    白钰铭的第四次作业
    白钰铭的第三次作业
    十二次作业!
    十一!!!作业!!
    第九次作业!
  • 原文地址:https://www.cnblogs.com/wuhu-JJJ/p/11249048.html
Copyright © 2011-2022 走看看