zoukankan      html  css  js  c++  java
  • 多传感器融合理论

    多传感器融合理论

    多传感器信息融合(Multi-sensor Information Fusion,MSIF),就是利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。

    一、多传感器融合几个概念
    硬件同步、硬同步:使用同一种硬件同时发布触发采集命令,实现各传感器采集、测量的时间同步。做到同一时刻采集相同的信息。

    软件同步:时间同步、空间同步。

    时间同步、时间戳同步、软同步:通过统一的主机给各个传感器提供基准时间,各传感器根据已经校准后的各自时间为各自独立采集的数据加上时间戳信息,可以做到所有传感器时间戳同步,但由于各个传感器各自采集周期相互独立,无法保证同一时刻采集相同的信息。

    空间同步: 将不同传感器坐标系的测量值转换到同一个坐标系中,其中激光传感器在高速移动的情况下需要考虑当前速度下的帧内位移校准。

     二、基本原理

    多传感器融合基本原理就像人脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。在这个过程中要充分利用多源数据进行合理支配与使用,而信息融合的最终目标则是基于各传感器获得的分离观测信息,通过对信息多级别、多方面组合导出更多有用信息。这不仅是利用了多个传感器相互协同操作的优势,而且也综合处理了其它信息源的数据来提高整个传感器系统的智能化。

    具体来讲,多传感器数据融合原理如下:

      (1)多个不同类型传感器(有源或无源)收集观测目标的数据;

      (2)对传感器的输出数据(离散或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;

      (3)对特征矢量Yi进行模式识别处理(如聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等),完成各传感器关于目标的说明;

      (4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;

      (5)利用融合算法将目标的各传感器数据进行合成,得到该目标的一致性解释与描述。

    三、多传感器的前融合与后融合技术

    1.后融合算法:

    每个传感器各自独立处理生成的目标数据。
    每个传感器都有自己独立的感知,比如激光雷达有激光雷达的感知,摄像头有摄像头的感知,毫米波雷达也会做出自己的感知。
    当所有传感器完成目标数据生成后,再由主处理器进行数据融合。

     2.前融合算法:

    只有一个感知的算法。对融合后的多维综合数据进行感知。
    在原始层把数据都融合在一起,融合好的数据就好比是一个Super传感器,而且这个传感器不仅有能力可以看到红外线,还有能力可以看到摄像头或者RGB,也有能力看到LiDAR的三维信息,就好比是一双超级眼睛。在这双超级眼睛上面,开发自己的感知算法,最后会输出一个结果层的物体。

     四、融合算法

    对于多传感器系统而言,信息具有多样性和复杂性,因此对信息融合算法的基本要求是具有鲁棒性和并行处理能力。其他要求还有算法的运算速度和精度;与前续预处理系统和后续信息识别系统的接口性能;与不同技术和方法的协调能力;对信息样本的要求等。一般情况下,基于非线性的数学方法,如果具有容错性、自适应性、联想记忆和并行处理能力,则都可以用来作为融合方法。

    多传感器数据融合的常用方法基本上可分为两大类:随机类和人工智能类。

    1. 随机类

    1)加权平均法

    信号级融合方法最简单直观的方法是加权平均法,将一组传感器提供的冗余信息进行加权平均,结果作为融合值。该方法是一种直接对数据源进行操作的方法。

    2)卡尔曼滤波法

    主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。

    卡尔曼滤波的递推特性使系统处理无需大量的数据存储和计算。但是采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在很多严重问题,例如:① 在组合信息大量冗余情况下,计算量将以滤波器维数的三次方剧增,实时性难以满足。② 传感器子系统的增加使故障概率增加,在某一系统出现故障而没有来得及被检测出时,故障会污染整个系统,使可靠性降低。

    3)多贝叶斯估计法

    将每一个传感器作为一个贝叶斯估计,把各单独物体的关联概率分布合成一个联合的后验概率分布函数,通过使联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型以提供整个环境的一个特征描述。

    4)D-S证据推理法

    该方法是贝叶斯推理的扩充,包含3个基本要点:基本概率赋值函数、信任函数和似然函数。

    D-S方法的推理结构是自上而下的,分为三级:第一级为目标合成,其作用是把来自独立传感器的观测结果合成为一个总的输出结果(ID);第二级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告。这种推理的基础是:一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第三级为更新,各传感器一般都存在随机误差,因此在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告更加可靠。所以在推理和多传感器合成之前,要先组合(更新)传感器的观测数据。

    5)产生式规则

    采用符号表示目标特征和相应传感器信息之间的联系,与每一个规则相联系的置信因子表示它的不确定性程度。当在同一个逻辑推理过程中,2个或多个规则形成一个联合规则时,可以产生融合。应用产生式规则进行融合的主要问题是每个规则置信因子的定义与系统中其他规则的置信因子相关,如果系统中引入新的传感器,需要加入相应的附加规则。

    2.  AI

    1)模糊逻辑推理

    模糊逻辑是多值逻辑,通过指定一个0到1之间的实数表示真实度(相当于隐含算子的前提),允许将多个传感器信息融合过程中的不确定性直接表示在推理过程中。如果采用某种系统化的方法对融合过程中的不确定性进行推理建模,则可以产生一致性模糊推理。

    与概率统计方法相比,逻辑推理存在许多优点,它在一定程度上克服了概率论所面临的问题,对信息的表示和处理更加接近人类的思维方式,一般比较适合于在高层次上的应用(如决策)。但是逻辑推理本身还不够成熟和系统化。此外由于逻辑推理对信息的描述存在很多的主观因素,所以信息的表示和处理缺乏客观性。

    模糊集合理论对于数据融合的实际价值在于它外延到模糊逻辑,模糊逻辑是一种多值逻辑,隶属度可视为一个数据真值的不精确表示。在MSF过程中,存在的不确定性可以直接用模糊逻辑表示,然后使用多值逻辑推理,根据模糊集合理论的各种演算对各种命题进行合并,进而实现数据融合。

    2)人工神经网络法

    神经网络具有很强的容错性以及自学习、自组织及自适应能力,能够模拟复杂的非线性映射。神经网络的这些特性和强大的非线性处理能力,恰好满足多传感器数据融合技术处理的要求。在多传感器系统中,各信息源所提供的环境信息都具有一定程度的不确定性,对这些不确定信息的融合过程实际上是一个不确定性推理过程。神经网络根据当前系统所接受的样本相似性确定分类标准,这种确定方法主要表现在网络的权值分布上,同时可以采用学习算法来获取知识,得到不确定性推理机制。利用神经网络的信号处理能力和自动推理功能,即实现了多传感器数据融合。

     

  • 相关阅读:
    document.getElementById的简便方式
    uri编解码
    javascript数组
    前端网站收藏
    html5 canvas
    interview material
    Merge into(oracle)
    机器学习入门二 ----- 机器学习术语表
    机器学习入门一 ------- 什么是机器学习,机器学习的在实际中的用处
    Dubbo 源码分析系列之一环境搭建
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/12904851.html
Copyright © 2011-2022 走看看