zoukankan      html  css  js  c++  java
  • 利用NVIDIA NGC的TensorRT容器优化和加速人工智能推理

    利用NVIDIA NGCTensorRT容器优化和加速人工智能推理

    Optimizing and Accelerating AI Inference with the TensorRT Container from NVIDIA NGC

    自然语言处理(NLP)是人工智能最具挑战性的任务之一,因为它需要理解上下文、语音和重音来将人类语音转换为文本。构建这个人工智能工作流首先要训练一个能够理解和处理口语到文本的模型。             

    BERT是这项任务的最佳模型之一。您不必从头开始构建像BERT这样的最先进的模型,而是可以针对您的特定用例微调经过预训练的BERT模型,并将其与NVIDIA Triton推理服务器配合使用。有两种基于BERT的模型可用:             

    BERT-Base有12层、12个注意头和1.1亿个参数的              

    BERT-large有24层,16个注意头,3.4亿个参数             

    这些模型中的许多参数都是稀疏的。大量的参数因此降低了推理的吞吐量。本文将使用BERT推理作为一个例子来展示如何利用nvidiangc的TensorRT容器,并通过您的AI模型提高推理的性能。

    Prerequisites

    This post uses the following resources:

    • The TensorFlow container for GPU-accelerated training
    • A system with up to eight NVIDIA GPUs, such as DGX-1
    • Other NVIDIA GPUs can be used but the training time varies with the number and type of GPU.
    • GPU-based instances are available on all major cloud service providers.
    • NVIDIA Docker
    • The latest CUDA driver

    Get the assets from NGC

    Before you can start the BERT optimization process, you must obtain a few assets from NGC:

    • A fine-tuned BERT-large model
    • Model scripts for running inference with the fine-tuned model, in TensorFlow

    Fine-tuned BERT-Large model

    If you followed our previous post, Jump-start AI Training with NGC Pretrained Models On-Premises and in the Cloud, you’ll see that we are using the same fine-tuned model for optimization.

    If you didn’t get a chance to fine-tune your own model, make a directory and download the pretrained model files. You have several download options.

    Option 1: Download from the command line using the following commands. In the terminal, use wget to download the fine-tuned model:

    mkdir bert_model && cd bert_model

    wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/bert_config.json

    wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/model.ckpt-5474.data-00000-of-00001

    wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/model.ckpt-5474.index

    wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/model.ckpt-5474.meta

    wget https://api.ngc.nvidia.com/v2/models/nvidia/bert_tf_v1_1_large_fp16_384/versions/2/files/vocab.txt

    Option 2: Download from the NGC website.

    1. In your browser, navigate to the model repo page.
    2. In the top right corner, choose Download.
    3. After the zip file finishes downloading, unzip the files.

    Refer to the directory where the fine-tuned model is saved as $MODEL_DIR. It can be the model that you saved from our previous post, or the model that you just downloaded.

    When you are in this directory, export it:

    export MODEL_DIR=$PWD

    cd ..

    Model scripts for running inference with the fine-tuned model

    Use the following scripts to see the performance of BERT inference in TensorFlow format. To download the model scripts:

    1. In your browser, navigate to the model scripts page.
    2. At the top right, choose Download.

    Figure 1. BERT inference model in TensorFlow from NGC.

    Alternatively, the model script can be downloaded using git from the NVIDIA Deep Learning Examples on GitHub:

    mkdir bert_tf && cd bert_tf

    git clone https://github.com/NVIDIA/DeepLearningExamples.git

    You are doing TensorFlow inference from the BERT directory. Whether you downloaded using the NGC webpage or GitHub, refer to this directory moving forward as $BERT_DIR.

    Export this directory as follows:

    export BERT_DIR=$PWD'/DeepLearningExamples/TensorFlow/LanguageModeling/BERT/'

    cd ..

    Before cloning the TensorRT GitHub repo, run the following command:

    mkdir bert_trt && cd bert_trt

    To get the script required for converting and running BERT TensorFlow model into TensorRT, follow the steps in Downloading the TensorRT Components. Make sure that the directory locations are correct:

    • $MODEL_DIR—Location of the BERT model checkpoint files.
    • $BERT_DIR—Location of the BERT TF scripts.

    TensorFlow performance evaluation

    In this section, you build, run, and evaluate the performance of BERT in TensorFlow.

    Set up and run a Docker container

    Build the Docker container by running the following command:

    docker build $BERT_DIR -t bert

    Launch the BERT container, with two mounted volumes:

    • One volume for the BERT model scripts code repo, mounted to /workspace/bert.
    • One volume for the fine-tuned model that you either fine-tuned yourself or downloaded from NGC, mounted to /finetuned-model-bert.

    docker run --gpus all -it

      -v $BERT_DIR:/workspace/bert

      -v $MODEL_DIR:/finetuned-model-bert 

      bert

    Prepare the dataset

    You are evaluating the BERT model using the SQuAD dataset. For more information, see SQuAD1.1: The Stanford Question Answering Dataset

    export BERT_PREP_WORKING_DIR="/workspace/bert/data"

     python3 /workspace/bert/data/bertPrep.py --action download --dataset squad

    if the line import PubMedTextFormatting gives any errors in the bertPrep.py script, comment this line out, as you don’t need the PubMed dataset in this example.

    This script downloads two folders in $BERT_PREP_WORKING_DIR/download/squad/: v2.0/ and v1.1/. For this post, use v1.1/.

    Run evaluations with the TensorFlow model

    Inside the container, navigate to the BERT workspace that contains the model scripts:

    cd /workspace/bert/

    You can run inference with a fine-tuned model in TensorFlow using scripts/run_squad.sh. For more information, see Jump-start AI Training with NGC Pretrained Models On-Premises and in the Cloud.

    There are two modifications to this script. First, set it to prediction-only mode:

    • --do_train=False
    • --do_predict=True

    When you manually edit --do_train=False in run_squad.sh, the training-related parameters that you pass into run_squad.sh aren’t relevant in this scenario.

    Second, comment out the following block starting at line number 27:

    #if [ "$bert_model" = "large" ] ; then

    #    export BERT_DIR=data/download/google_pretrained_weights/uncased_L-24_H-1024_A-16

    #else

    #    export BERT_DIR=data/download/google_pretrained_weights/uncased_L-12_H-768_A-12

    #fi

    Because you can get vocab.txt and bert_config.json from the mounted directory /finetuned-model-bert, you do not need this block of code.

    Now, export BERT_DIR inside the container:

    export BERT_DIR=/finetuned-model-bert

    After making the modifications, issue the following command:

    bash scripts/run_squad.sh 1 5e-6 fp16 true 1 384 128 large 1.1 /finetuned-model-bert/model.ckpt<-num>

    Put the correct checkpoint number <-num> available:  

    INFO:tensorflow:Throughput Average (sentences/sec) = 106.56

    We observed that inference speed is 106.56 sentences per second for running inference directly in TensorFlow on a system powered with a single NVIDIA T4 GPU. Performance may differ depending on the number of GPUs and the architecture of the GPUs.

    This is good performance, but could it be better? Investigate by using the scripts in /workspace/bert/trt/ to convert the TF model into TensorRT 7.1, then run inference on the TensorRT BERT model engine. For that process, switch over to the TensorRT repo and build a Docker image to launch.

    Issue the following command:

    exit

    TensorRT performance evaluation

    In the following section, you build, run, and evaluate the performance of BERT in TensorFlow. Before proceeding, make sure that you have downloaded and set up the TensorRT GitHub repo.

    Set up a Docker container

    In this step, you build and launch the Docker image from Dockerfile for TensorRT.

    On your host machine, navigate to the TensorRT directory:

    cd TensorRT

    The script docker/build.sh builds the TensorRT Docker container: 

    ./docker/build.sh --file docker/ubuntu.Dockerfile --tag tensorrt-ubuntu --os 18.04 --cuda 11.0

    After the container is built, you must launch it by executing the docker/launch.sh script. However, before launching the container, modify docker/launch.sh to add -v $MODEL_DIR:/finetuned-model-bert and -v $BERT_DIR/data/download/squad/v1.1:/data/squad in docker_args to pass in your fine-tuned model and squad dataset, respectively.

    The docker_args at line 49 should look like the following code:

    docker_args="$extra_args  -v $MODEL_DIR:/finetuned-model-bert -v $BERT_DIR/data/download/squad/v1.1:/data/squad -v $arg_trtrelease:/tensorrt -v $arg_trtsource:/workspace/TensorRT -it $arg_imagename:latest"

    Now build and launch the Docker image locally:

    ./docker/launch.sh --tag tensorrt-ubuntu --gpus all --release $TRT_RELEASE --source $TRT_SOURCE

    When you are in the container, you must build the TensorRT plugins: 

    cd $TRT_SOURCE

    export LD_LIBRARY_PATH=`pwd`/build/out:$LD_LIBRARY_PATH:/tensorrt/lib

    mkdir -p build && cd build

    cmake .. -DTRT_LIB_DIR=$TRT_RELEASE/lib -DTRT_OUT_DIR=`pwd`/out

    make -j$(nproc)

     pip3 install /tensorrt/python/tensorrt-7.1*-cp36-none-linux_x86_64.whl

    Now you are ready to build the BERT TensorRT engine.

    Build the TensorRT engine

    Make a directory to store the TensorRT engine:

    mkdir -p /workspace/TensorRT/engines

    Optionally, explore /workspace/TensorRTdemo/BERT/scripts/download_model.sh to see how you can use the ngc registry model download-version command to download models from NGC.

    Run the builder.py script, noting the following values:

    • Path to the TensorFlow model /finetuned-model-bert/model.ckpt-<num>/li>
    • Output path for the engine to be built
    • Batch size 1
    • Sequence length 384
    • Precision fp16
    • Checkpoint path /finetuned-model-bert

    cd /workspace/TensorRT/demo/BERT

     python3 builder.py -m /finetuned-model-bert/model.ckpt-5474 -o /workspace/TensorRT/engines/bert_large_384.engine -b 1 -s 384 --fp16 -c /finetuned-model-bert/

    Make sure that you provide the correct checkpoint model. The script takes ~1-2 mins to build the TensorRT engine.

    Run the TensorRT inference

    Now run the built TensorRT inference engine on 2K samples from the SQADv1.1 evaluation dataset. To run and get the throughput numbers, replace the code from line number 222 to line number 228 in inference.py, as shown in the following code block.

    Be mindful of indentation. If the prompt asks for a password while you are installing vim in the container, use the password nvidia.

            if squad_examples:

                eval_time_l = []

                all_predictions = collections.OrderedDict()

     

                for example_index, example in enumerate(squad_examples):

                    print("Processing example {} of {}".format(example_index+1, len(squad_examples)), end=" ")

                    features = question_features(example.doc_tokens, example.question_text)

                    eval_time_elapsed, prediction, nbest_json = inference(features, example.doc_tokens)

                    eval_time_l.append(1.0/eval_time_elapsed)

                    all_predictions[example.id] = prediction

                    if example_index+1 == 2000:

                        break

                print("Throughput Average (sentences/sec) = ",np.mean(eval_time_l)) 

    Now run the inference:

    CUDA_VISIBLE_DEVICES=0 python3 inference.py -e /workspace/TensorRT/engines/bert_large_384.engine -b

     

    1 -s 384 -sq /data/squad/dev-v1.1.json -v /finetuned-model-bert/vocab.txt

     

    Throughput Average (sentences/sec) =  136.59

    We observed that inference speed is 136.59 sentences per second for running inference with TensorRT 7.1 on a system powered with a single NVIDIA T4 GPU. Performance may differ depending on the number of GPUs and the architecture of the GPUs, where the data is stored and other factors. However, you’ll always observe a performance boost due to model optimization using TensorRT.

    Figure shows that the TensorRT BERT engine gives an average throughput of 136.59 sentences/sec compared to 106.56 sentences/sec given by the BERT model in TensorFlow. This is a 28% boost in throughput.

    Figure 2. Performance gained when running BERT in TensorRT over TensorFlow.

    Summary

    Pull the TensorRT container from NGC to easily and quickly performance tune your models in all major frameworks, create novel low-latency inference applications, and deliver the best quality of service (QoS) to customers.

  • 相关阅读:
    在 Xcode 6 中使用矢量图( iPhone 6 置配 UI)
    在Xcode中使用Git进行源码版本控制
    UIAlertController Changes in iOS 8
    iOS8需要兼容的内容
    iOS8中提示框的使用UIAlertController(UIAlertView和UIActionSheet二合一)
    一些被提问频率最高的12个php面试题,以及对应的常规回答。
    MYSQL 优化常用方法(转载)
    mysql 性能优化方案 (转)
    练手mysqlbinlog日志恢复数据(centos6.5 64,mysql5.1)
    cnblogs博客申请完毕,以后再这里安家落户
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/13544959.html
Copyright © 2011-2022 走看看