zoukankan      html  css  js  c++  java
  • TensorRT 基于Yolov3的开发

    TensorRT 基于Yolov3的开发

    Models

    Desc

    tensorRT for Yolov3

    https://github.com/lewes6369/TensorRT-Yolov3

    Test Enviroments

    Ubuntu  16.04

    TensorRT 5.0.2.6/4.0.1.6

    CUDA 9.2

    下载官方模型转换的caffe模型:             

    百度云pwd:gbue             

    谷歌drive             

    如果运行模型是自己训练的,注释“upsample_param”块,并将最后一层的prototxt修改为:

    Download the caffe model converted by official model:

    Baidu Cloud here pwd: gbue

    Google Drive here

    If run model trained by yourself, comment the "upsample_param" blocks, and modify the prototxt the last layer as:

    layer {

        #the bottoms are the yolo input layers

        bottom: "layer82-conv"

        bottom: "layer94-conv"

        bottom: "layer106-conv"

        top: "yolo-det"

        name: "yolo-det"

        type: "Yolo"

    }

    如果不同的内核,还需要更改“YoloConfigs.h”中的yolo配置。

    Run Sample

    #build source code

    git submodule update --init --recursive

    mkdir build

    cd build && cmake .. && make && make install

    cd ..

     

    #for yolov3-608

    ./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80

     

    #for fp16

    ./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=fp16

     

    #for int8 with calibration datasets

    ./install/runYolov3 --caffemodel=./yolov3_608.caffemodel --prototxt=./yolov3_608.prototxt --input=./test.jpg --W=608 --H=608 --class=80 --mode=int8 --calib=./calib_sample.txt

     

    #for yolov3-416 (need to modify include/YoloConfigs for YoloKernel)

    ./install/runYolov3 --caffemodel=./yolov3_416.caffemodel --prototxt=./yolov3_416.prototxt --input=./test.jpg --W=416 --H=416 --class=80

    Desc

    tensorRT for Yolov3

    Test Enviroments

    Ubuntu  16.04
    TensorRT 5.0.2.6/4.0.1.6
    CUDA 9.2

    Performance

     

    Eval Result

    用appending附件编译上面的模型模型--evallist=labels.txt              

    从val2014中选择的200张图片制作的int8校准数据(见脚本目录)

     

    提示注意:             
    在yolo层和nms中,caffe的实现没有什么不同,应该与tensorRT fp32的结果相似。

    Details About Wrapper

    see link TensorRTWrapper

    https://github.com/lewes6369/tensorRTWrapper

    TRTWrapper

    Desc

    a wrapper for tensorRT net (parser caffe)

    Test Environments

    Ubuntu  16.04
    TensorRT 5.0.2.6/4.0.1.6
    CUDA 9.2

    About Wraper

    you can use the wrapper like this:

    //normal
    std::vector<std::vector<float>> calibratorData;
    trtNet net("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData);
    //fp16
    trtNet net_fp16("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData,RUN_MODE:FLOAT16);
    //int8
    trtNet net_int8("vgg16.prototxt","vgg16.caffemodel",{"prob"},calibratorData,RUN_MODE:INT8);
     
    //run inference:
    net.doInference(input_data.get(), outputData.get());
     
    //can print time cost
    net.printTime();
     
    //can write to engine and load From engine
    net.saveEngine("save_1.engine");
    trtNet net2("save_1.engine");

    when you need add new plugin ,just add the plugin code to pluginFactory

    Run Sample

    #for classification
    cd sample
    mkdir build
    cd build && cmake .. && make && make install
    cd ..
    ./install/runNet --caffemodel=${CAFFE_MODEL_NAME} --prototxt=${CAFFE_PROTOTXT} --input=./test.jpg
    人工智能芯片与自动驾驶
  • 相关阅读:
    创建共享内存函数CreateFileMapping()详解
    窗口类、窗口类对象与窗口
    ubuntu中文版切换为英文后字体变化问题解决
    安装ubuntu12.04LTS卡住以及花屏问题
    时钟周期、振荡周期、机器周期、CPU周期、状态周期、指令周期、总线周期、任务周期
    波特率
    myod
    mycp
    20165226 2017-2018-2《Java程序设计》课程总结
    2017-2018-2 20165226 实验五《网络编程与安全》实验报告
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14059414.html
Copyright © 2011-2022 走看看