zoukankan      html  css  js  c++  java
  • PyTorch迁移学习

    PyTorch迁移学习

    实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练,得到卷积网络ConvNet, 然后,将这个ConvNet的参数,作为目标任务的初始化参数,或者固定这些参数。

    转移学习的两个主要场景:

    • 微调Convnet:使用预训练的网络(如在imagenet 1000上训练而来的网络),来初始化自己的网络,而不是随机初始化。其它的训练步骤不变。
    • Convnet看成固定的特征提取器: 首先固定ConvNet,除了最后的全连接层外的其他所有层。最后的全连接层被替换成一个新的随机初始化的层,只有这个新的层会被训练[只有这层参数会在反向传播时更新]

    下面是利用PyTorch进行迁移学习步骤,要解决的问题是,训练一个模型来对蚂蚁和蜜蜂进行分类。

    1.导入相关的包

    # License: BSD

    # Author: Sasank Chilamkurthy

     

    from __future__ import print_function, division

     

    import torch

    import torch.nn as nn

    import torch.optim as optim

    from torch.optim import lr_scheduler

    import numpy as np

    import torchvision

    from torchvision import datasets, models, transforms

    import matplotlib.pyplot as plt

    import time

    import os

    import copy

     

    plt.ion()   # interactive mode

    2.加载数据

    要解决的问题是,训练一个模型来分类蚂蚁ants和蜜蜂bees。ants和bees各有约120张训练图片。每个类有75张验证图片。从零开始,在如此小的数据集上进行训练,通常是很难泛化的。由于使用迁移学习,模型的泛化能力会相当好。该数据集是imagenet的一个非常小的子集。下载数据,并将其解压缩到当前目录。

    #训练集数据扩充和归一化

    #在验证集上仅需要归一化

    data_transforms = {

        'train': transforms.Compose([

            transforms.RandomResizedCrop(224), #随机裁剪一个area然后再resize

            transforms.RandomHorizontalFlip(), #随机水平翻转

            transforms.ToTensor(),

            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

        ]),

        'val': transforms.Compose([

            transforms.Resize(256),

            transforms.CenterCrop(224),

            transforms.ToTensor(),

            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

        ]),

    }

     

    data_dir = 'data/hymenoptera_data'

    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),

                                              data_transforms[x])

                      for x in ['train', 'val']}

    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,

                                                 shuffle=True, num_workers=4)

                  for x in ['train', 'val']}

    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}

    class_names = image_datasets['train'].classes

     

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    3.可视化部分图像数据

    可视化部分训练图像,以便了解数据扩充。

    def imshow(inp, title=None):

        """Imshow for Tensor."""

        inp = inp.numpy().transpose((1, 2, 0))

        mean = np.array([0.485, 0.456, 0.406])

        std = np.array([0.229, 0.224, 0.225])

        inp = std * inp + mean

        inp = np.clip(inp, 0, 1)

        plt.imshow(inp)

        if title is not None:

            plt.title(title)

        plt.pause(0.001)  # pause a bit so that plots are updated

     

     

    # 获取一批训练数据

    inputs, classes = next(iter(dataloaders['train']))

     

    # 批量制作网格

    out = torchvision.utils.make_grid(inputs)

     

    imshow(out, title=[class_names[x] for x in classes])

     

    4.训练模型

    编写一个通用函数来训练模型。下面将说明: * 调整学习速率 * 保存最好的模型

    下面的参数scheduler,是一个来自 torch.optim.lr_scheduler的学习速率调整类的对象(LR scheduler object)。

    def train_model(model, criterion, optimizer, scheduler, num_epochs=25):

        since = time.time()

     

        best_model_wts = copy.deepcopy(model.state_dict())

        best_acc = 0.0

     

        for epoch in range(num_epochs):

            print('Epoch {}/{}'.format(epoch, num_epochs - 1))

            print('-' * 10)

     

            # 每个epoch都有一个训练和验证阶段

            for phase in ['train', 'val']:

                if phase == 'train':

                    scheduler.step()

                    model.train()  # Set model to training mode

                else:

                    model.eval()   # Set model to evaluate mode

     

                running_loss = 0.0

                running_corrects = 0

     

                # 迭代数据.

                for inputs, labels in dataloaders[phase]:

                    inputs = inputs.to(device)

                    labels = labels.to(device)

     

                    # 零参数梯度

                    optimizer.zero_grad()

     

                    # 前向

                    # track history if only in train

                    with torch.set_grad_enabled(phase == 'train'):

                        outputs = model(inputs)

                        _, preds = torch.max(outputs, 1)

                        loss = criterion(outputs, labels)

     

                        # 后向+仅在训练阶段进行优化

                        if phase == 'train':

                            loss.backward()

                            optimizer.step()

     

                    # 统计

                    running_loss += loss.item() * inputs.size(0)

                    running_corrects += torch.sum(preds == labels.data)

     

                epoch_loss = running_loss / dataset_sizes[phase]

                epoch_acc = running_corrects.double() / dataset_sizes[phase]

     

                print('{} Loss: {:.4f} Acc: {:.4f}'.format(

                    phase, epoch_loss, epoch_acc))

     

                # 深度复制mo

                if phase == 'val' and epoch_acc > best_acc:

                    best_acc = epoch_acc

                    best_model_wts = copy.deepcopy(model.state_dict())

     

            print()

     

        time_elapsed = time.time() - since

        print('Training complete in {:.0f}m {:.0f}s'.format(

            time_elapsed // 60, time_elapsed % 60))

        print('Best val Acc: {:4f}'.format(best_acc))

     

        # 加载最佳模型权重

        model.load_state_dict(best_model_wts)

        return model

    5.可视化模型的预测结果

    #一个通用的展示少量预测图片的函数

    def visualize_model(model, num_images=6):

        was_training = model.training

        model.eval()

        images_so_far = 0

        fig = plt.figure()

     

        with torch.no_grad():

            for i, (inputs, labels) in enumerate(dataloaders['val']):

                inputs = inputs.to(device)

                labels = labels.to(device)

     

                outputs = model(inputs)

                _, preds = torch.max(outputs, 1)

     

                for j in range(inputs.size()[0]):

                    images_so_far += 1

                    ax = plt.subplot(num_images//2, 2, images_so_far)

                    ax.axis('off')

                    ax.set_title('predicted: {}'.format(class_names[preds[j]]))

                    imshow(inputs.cpu().data[j])

     

                    if images_so_far == num_images:

                        model.train(mode=was_training)

                        return

            model.train(mode=was_training)

    6.场景1:微调ConvNet

    加载预训练模型,重置最终完全连接的图层。

    model_ft = models.resnet18(pretrained=True)

    num_ftrs = model_ft.fc.in_features

    model_ft.fc = nn.Linear(num_ftrs, 2)

     

    model_ft = model_ft.to(device)

     

    criterion = nn.CrossEntropyLoss()

     

    # 观察所有参数都正在优化

    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

     

    # 7epochs衰减LR通过设置gamma=0.1

    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

    训练和评估模型

    (1)训练模型 该过程在CPU上,需要大约15-25分钟,但是在GPU上,它只需不到一分钟。

    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,

                           num_epochs=25)

    • 输出

    Epoch 0/24

    ----------

    train Loss: 0.7032 Acc: 0.6025

    val Loss: 0.1698 Acc: 0.9412

     

    Epoch 1/24

    ----------

    train Loss: 0.6411 Acc: 0.7787

    val Loss: 0.1981 Acc: 0.9281

    ·

    ·

    ·

    Epoch 24/24

    ----------

    train Loss: 0.2812 Acc: 0.8730

    val Loss: 0.2647 Acc: 0.9150

     

    Training complete in 1m 7s

    Best val Acc: 0.941176

    (2)模型评估效果可视化

    visualize_model(model_ft)

    • 输出
    •  

    7.场景2ConvNet作为固定特征提取器

    需要冻结除最后一层之外的所有网络。通过设置requires_grad == Falsebackward()

    来冻结参数,这样在反向传播backward()的时候,梯度就不会被计算。

    model_conv = torchvision.models.resnet18(pretrained=True)

    for param in model_conv.parameters():

        param.requires_grad = False

     

    # Parameters of newly constructed modules have requires_grad=True by default

    num_ftrs = model_conv.fc.in_features

    model_conv.fc = nn.Linear(num_ftrs, 2)

     

    model_conv = model_conv.to(device)

     

    criterion = nn.CrossEntropyLoss()

     

    # Observe that only parameters of final layer are being optimized as

    # opposed to before.

    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

     

    # Decay LR by a factor of 0.1 every 7 epochs

    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

    训练和评估

    (1)训练模型 在CPU上,与前一个场景相比,这将花费大约一半的时间,因为不需要为大多数网络计算梯度。但需要计算转发。

    model_conv = train_model(model_conv, criterion, optimizer_conv,

                             exp_lr_scheduler, num_epochs=25)

    • 输出

    Epoch 0/24

    ----------

    train Loss: 0.6400 Acc: 0.6434

    val Loss: 0.2539 Acc: 0.9085

    ·

    ·

    ·

    Epoch 23/24

    ----------

    train Loss: 0.2988 Acc: 0.8607

    val Loss: 0.2151 Acc: 0.9412

     

    Epoch 24/24

    ----------

    train Loss: 0.3519 Acc: 0.8484

    val Loss: 0.2045 Acc: 0.9412

     

    Training complete in 0m 35s

    Best val Acc: 0.954248

    (2)模型评估效果可视化

    visualize_model(model_conv)

     

    plt.ioff()

    plt.show()

    • 输出 

     

    8.文件下载

    人工智能芯片与自动驾驶
  • 相关阅读:
    ubuntu samba 服务器设置
    Unable to find the ncurses libraries
    ubuntu 11.04 tftp 设置
    Ubuntu 11.04 NFS 配置
    Ubuntu server 网络设置
    ubuntu 11.04 tslib1.4 编译
    HGE DirectX9.0C版本修改已经完成,发图祝贺一下。
    HGE继续修改绘图底层
    D3D中的AGP内存、系统内存、显存的理解
    For循环和递归的一些区别。
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14383765.html
Copyright © 2011-2022 走看看