zoukankan      html  css  js  c++  java
  • TVM Operator Inventory (TOPI)简介

    TOPI简介

    这是 TVM Operator Inventory (TOPI) 的介绍。TOPI 提供了比 TVM 具有更高抽象的 numpy 风格的,通用操作和调度。TOPI 如何在 TVM 中,编写样板代码。

    from __future__ import absolute_import, print_function
     
    import tvm
    import tvm.testing
    from tvm import te
    from tvm import topi
    import numpy as np

    基本示例

    重新审视行总和操作(相当于B = numpy.sum(A, axis=1)),要计算二维 TVM 张量 A 行总和,应该指定符号操作及调度。

    n = te.var("n")
    m = te.var("m")
    A = te.placeholder((n, m), name="A")
    k = te.reduce_axis((0, m), "k")
    B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B")
    s = te.create_schedule(B.op)

    以人类可读的格式,检查 IR 代码,可以这样做。

    print(tvm.lower(s, [A], simple_mode=True))

    输出:

    primfn(A_1: handle) -> ()
      attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
      buffers = {A: Buffer(A_2: Pointer(float32), float32, [n: int32, m: int32], [stride: int32, stride_1: int32], type="auto")}
      buffer_map = {A_1: A} {
      allocate(B: Pointer(global float32), float32, [n]), storage_scope = global;
      for (i: int32, 0, n) {
        B[i] = 0f32
        for (k: int32, 0, m) {
          B[i] = ((float32*)B[i] + (float32*)A_2[((i*stride) + (k*stride_1))])
        }
      }
    }

    对于这样一个常见的操作,必须定义 reduce 轴,以及使用 te.compute进行显式计算 。对于更复杂的操作,需要提供多少细节。可以用简单topi.sum的,如numpy.sum,替换这两行。

    C = topi.sum(A, axis=1)
    ts = te.create_schedule(C.op)
    print(tvm.lower(ts, [A], simple_mode=True))

    输出:

    primfn(A_1: handle) -> ()
      attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
      buffers = {A: Buffer(A_2: Pointer(float32), float32, [n: int32, m: int32], [stride: int32, stride_1: int32], type="auto")}
      buffer_map = {A_1: A} {
      allocate(A_red: Pointer(global float32), float32, [n]), storage_scope = global;
      for (ax0: int32, 0, n) {
        A_red[ax0] = 0f32
        for (k1: int32, 0, m) {
          A_red[ax0] = ((float32*)A_red[ax0] + (float32*)A_2[((ax0*stride) + (k1*stride_1))])
        }
      }
    }

    Numpy 风格的算子重载

    可以使用topi.broadcast_add具有正确(可广播特定)shape的张量,添加两个张量。TOPI 为此类常见操作,提供了算子重载。例如,

    x, y = 100, 10
    a = te.placeholder((x, y, y), name="a")
    b = te.placeholder((y, y), name="b")
    c = a + b  # same as topi.broadcast_add
    d = a * b  # same as topi.broadcast_mul

    使用相同的语法重载,TOPI 处理,将原语(intfloat)广播到 tensor d - 3.14。

    通用调度和融合操作

    TOPI 如何免于在较低级别的 API 中,编写显式计算。像以前一样进行调度,TOPI根据给定的上下文,提供更高级别的调度方法。例如,对于 CUDA,可以using only topi.generic.schedule_reduce,调度topi.sum结尾的一系列操作。

    e = topi.elemwise_sum([c, d])
    f = e / 2.0
    g = topi.sum(f)
    with tvm.target.cuda():
        sg = topi.cuda.schedule_reduce(g)
        print(tvm.lower(sg, [a, b], simple_mode=True))

    输出:

    primfn(a_1: handle, b_1: handle) -> ()
      attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
      buffers = {b: Buffer(b_2: Pointer(float32), float32, [10, 10], []),
                 a: Buffer(a_2: Pointer(float32), float32, [100, 10, 10], [])}
      buffer_map = {a_1: a, b_1: b} {
      allocate(T_divide_red: Pointer(global float32), float32, [1]), storage_scope = global;
      attr [IterVar(threadIdx.x: int32, [0:1024], "ThreadIndex", "threadIdx.x")] "thread_extent" = 1024;
      allocate(T_divide_red.rf: Pointer(local float32), float32, [1]), storage_scope = local;
      allocate(reduce_temp0: Pointer(local float32), float32, [1]), storage_scope = local {
        T_divide_red.rf[0] = 0f32
        for (k0.k1.fused.k2.fused.outer: int32, 0, 10) {
          if @tir.likely((((((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x) < 10000) && (((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x) < 10000)) && (((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x) < 10000)), dtype=bool) {
            T_divide_red.rf[0] = ((float32*)T_divide_red.rf[0] + ((((float32*)a_2[((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x)] + (float32*)b_2[floormod(((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x), 100)]) + ((float32*)a_2[((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x)]*(float32*)b_2[floormod(((k0.k1.fused.k2.fused.outer*1024) + threadIdx.x), 100)]))*0.5f32))
          }
        }
        attr [meta[tir.CommReducer][0]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle);
        @tir.tvm_thread_allreduce(1u32, (float32*)T_divide_red.rf[0], True, reduce_temp0, threadIdx.x, dtype=handle)
        if (threadIdx.x == 0) {
          T_divide_red[0] = (float32*)reduce_temp0[0]
        }
      }
    }

    计算的预定阶段已经累积,可以通过以下方式检查。

    print(sg.stages)

    输出:

    [stage(a, placeholder(a, 0xd9c0fa00)), stage(b, placeholder(b, 0xe225cf70)), stage(T_add, compute(T_add, body=[(a[ax0, ax1, ax2] + b[ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=broadcast, attrs={})), stage(T_multiply, compute(T_multiply, body=[(a[ax0, ax1, ax2]*b[ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=broadcast, attrs={})), stage(T_elemwise_sum, compute(T_elemwise_sum, body=[(T_add[ax0, ax1, ax2] + T_multiply[ax0, ax1, ax2])], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=elemwise, attrs={})), stage(T_divide, compute(T_divide, body=[(T_elemwise_sum[ax0, ax1, ax2]/2f)], axis=[iter_var(ax0, range(min=0, ext=100)), iter_var(ax1, range(min=0, ext=10)), iter_var(ax2, range(min=0, ext=10))], reduce_axis=[], tag=elemwise, attrs={})), stage(T_divide_red.rf, compute(T_divide_red.rf, body=[reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[T_divide[floordiv(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10), floormod(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10), floormod((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10)]], init=[], axis=[iter_var(k0.k1.fused.k2.fused.outer, range(min=0, ext=10))], where=tir.likely((((floordiv(floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10), 10) < 100) && (floordiv((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)), 10) < 1000)) && ((k0.k1.fused.k2.fused.inner + (k0.k1.fused.k2.fused.outer*1024)) < 10000))), value_index=0)], axis=[iter_var(k0.k1.fused.k2.fused.inner, range(min=0, ext=1024))], reduce_axis=[iter_var(k0.k1.fused.k2.fused.outer, range(min=0, ext=10))], tag=, attrs={})), stage(T_divide_red, compute(T_divide_red.repl, body=[reduce(combiner=comm_reducer(result=[(x + y)], lhs=[x], rhs=[y], identity_element=[0f]), source=[T_divide_red.rf[k0.k1.fused.k2.fused.inner.v]], init=[], axis=[iter_var(k0.k1.fused.k2.fused.inner.v, range(min=0, ext=1024))], where=(bool)1, value_index=0)], axis=[], reduce_axis=[iter_var(k0.k1.fused.k2.fused.inner.v, range(min=0, ext=1024))], tag=, attrs={}))]

    可以通过与numpy结果进行比较,测试正确性,如下所示。

    func = tvm.build(sg, [a, b, g], "cuda")
    dev = tvm.cuda(0)
    a_np = np.random.uniform(size=(x, y, y)).astype(a.dtype)
    b_np = np.random.uniform(size=(y, y)).astype(b.dtype)
    g_np = np.sum(np.add(a_np + b_np, a_np * b_np) / 2.0)
    a_nd = tvm.nd.array(a_np, dev)
    b_nd = tvm.nd.array(b_np, dev)
    g_nd = tvm.nd.array(np.zeros(g_np.shape, dtype=g_np.dtype), dev)
    func(a_nd, b_nd, g_nd)
    tvm.testing.assert_allclose(g_nd.numpy(), g_np, rtol=1e-5)

    TOPI 提供常用的神经网络操作,如 _softmax_ 优化调度

    tarray = te.placeholder((512, 512), name="tarray")
    softmax_topi = topi.nn.softmax(tarray)
    with tvm.target.Target("cuda"):
        sst = topi.cuda.schedule_softmax(softmax_topi)
        print(tvm.lower(sst, [tarray], simple_mode=True))

    输出:

    primfn(tarray_1: handle) -> ()
      attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}
      buffers = {tarray: Buffer(tarray_2: Pointer(float32), float32, [512, 512], [])}
      buffer_map = {tarray_1: tarray} {
      allocate(T_softmax_norm: Pointer(global float32x4), float32x4, [65536]), storage_scope = global;
      attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 512;
      allocate(normal_reduce_temp0: Pointer(local float32), float32, [1]), storage_scope = local;
      allocate(reduce_temp0: Pointer(local float32), float32, [1]), storage_scope = local;
      allocate(T_softmax_exp: Pointer(warp float32), float32, [512]), storage_scope = warp;
      allocate(normal_reduce_temp0_1: Pointer(local float32), float32, [1]), storage_scope = local;
      allocate(reduce_temp0_1: Pointer(local float32), float32, [1]), storage_scope = local {
        attr [IterVar(threadIdx.x: int32, [0:32], "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 {
          normal_reduce_temp0[0] = -3.40282e+38f32
          for (k.inner: int32, 0, 16) {
            normal_reduce_temp0[0] = max((float32*)normal_reduce_temp0[0], (float32*)tarray_2[(((blockIdx.x*512) + (threadIdx.x*16)) + k.inner)])
          }
          attr [meta[tir.CommReducer][0]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle);
          @tir.tvm_thread_allreduce(1u32, (float32*)normal_reduce_temp0[0], True, reduce_temp0, threadIdx.x, dtype=handle)
          for (i1.inner.outer: int32, 0, 4) {
            T_softmax_exp[ramp(((threadIdx.x*16) + (i1.inner.outer*4)), 1, 4)] = @tir.exp(((float32x4*)tarray_2[ramp((((blockIdx.x*512) + (threadIdx.x*16)) + (i1.inner.outer*4)), 1, 4)] - broadcast((float32*)reduce_temp0[0], 4)), dtype=float32x4)
          }
        }
        attr [IterVar(threadIdx.x, [0:32], "ThreadIndex", "threadIdx.x")] "thread_extent" = 32 {
          normal_reduce_temp0_1[0] = 0f32
          for (k.inner_1: int32, 0, 16) {
            normal_reduce_temp0_1[0] = ((float32*)normal_reduce_temp0_1[0] + (float32*)T_softmax_exp[((threadIdx.x*16) + k.inner_1)])
          }
          attr [meta[tir.CommReducer][1]] "reduce_scope" = @tir.reinterpret(0u64, dtype=handle);
          @tir.tvm_thread_allreduce(1u32, (float32*)normal_reduce_temp0_1[0], True, reduce_temp0_1, threadIdx.x, dtype=handle)
          for (i1.inner.outer_1: int32, 0, 4) {
            T_softmax_norm[ramp((((blockIdx.x*512) + (threadIdx.x*16)) + (i1.inner.outer_1*4)), 1, 4)] = ((float32x4*)T_softmax_exp[ramp(((threadIdx.x*16) + (i1.inner.outer_1*4)), 1, 4)] / broadcast((float32*)reduce_temp0_1[0], 4))
          }
        }
      }
    }

    融合卷积

    可以融合topi.nn.conv2d和topi.nn.relu在一起。

    TOPI 函数都是通用函数。对不同的后端,有不同的实现优化性能。对于每个后端,有必要在计算声明和调度的目标范围内调用。TVM 将选择正确的函数,调用目标信息。

    data = te.placeholder((1, 3, 224, 224))
    kernel = te.placeholder((10, 3, 5, 5))
     
    with tvm.target.Target("cuda"):
        conv = topi.cuda.conv2d_nchw(data, kernel, 1, 2, 1)
        out = topi.nn.relu(conv)
        sconv = topi.cuda.schedule_conv2d_nchw([out])
    print(tvm.lower(sconv, [data, kernel], simple_mode=True))
    Out:

    primfn(placeholder_2: handle, placeholder_3: handle) -> ()

      attr = {"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}

      buffers = {placeholder_1: Buffer(placeholder_4: Pointer(float32), float32, [10, 3, 5, 5], []),

                 placeholder: Buffer(placeholder_5: Pointer(float32), float32, [1, 3, 224, 224], [])}

      buffer_map = {placeholder_2: placeholder, placeholder_3: placeholder_1} {

      allocate(compute: Pointer(global float32), float32, [501760]), storage_scope = global;

      attr [IterVar(blockIdx.z: int32, (nullptr), "ThreadIndex", "blockIdx.z")] "thread_extent" = 5;

      allocate(compute_1: Pointer(local float32), float32, [14]), storage_scope = local;

      allocate(pad_temp.shared: Pointer(shared float32), float32, [112]), storage_scope = shared;

      allocate(placeholder.shared: Pointer(shared float32), float32, [2]), storage_scope = shared;

      attr [IterVar(blockIdx.y: int32, (nullptr), "ThreadIndex", "blockIdx.y")] "thread_extent" = 224;

      attr [IterVar(blockIdx.x: int32, (nullptr), "ThreadIndex", "blockIdx.x")] "thread_extent" = 2;

      attr [IterVar(threadIdx.z: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

      attr [IterVar(threadIdx.y: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

      attr [IterVar(threadIdx.x: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {

        compute_1[0] = 0f32

        compute_1[2] = 0f32

        compute_1[4] = 0f32

        compute_1[6] = 0f32

        compute_1[8] = 0f32

        compute_1[10] = 0f32

        compute_1[12] = 0f32

        compute_1[1] = 0f32

        compute_1[3] = 0f32

        compute_1[5] = 0f32

        compute_1[7] = 0f32

        compute_1[9] = 0f32

        compute_1[11] = 0f32

        compute_1[13] = 0f32

        for (rc.outer: int32, 0, 3) {

          for (ry.outer: int32, 0, 5) {

            attr [IterVar(threadIdx.z_1: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_1: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_1: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {

              pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (2 <= ((blockIdx.x*112) + (threadIdx.x_1*7)))), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 450)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*112) + (threadIdx.x_1*7)))), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 449)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)

            }

            attr [IterVar(threadIdx.z_2: int32, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_2: int32, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_2: int32, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;

            if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {

              placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5))]

            }

            compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))

            compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))

            compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))

            compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))

            compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))

            compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))

            compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))

            compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))

            compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))

            compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))

            compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))

            compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))

            compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))

            compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))

            attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {

              pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (1 <= ((blockIdx.x*112) + (threadIdx.x_1*7)))), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 449)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)

            }

            attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;

            if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {

              placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 1)]

            }

            compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))

            compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))

            compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))

            compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))

            compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))

            compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))

            compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))

            compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))

            compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))

            compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))

            compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))

            compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))

            compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))

            compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))

            attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {

              pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 448)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32)

            }

            attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;

            if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {

              placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 2)]

            }

            compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))

            compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))

            compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))

            compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))

            compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))

            compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))

            compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))

            compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))

            compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))

            compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))

            compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))

            compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))

            compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))

            compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))

            attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {

              pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 447)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*112) + (threadIdx.x_1*7)) < 217)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 441)], 0f32, dtype=float32)

            }

            attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;

            if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {

              placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 3)]

            }

            compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))

            compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))

            compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))

            compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))

            compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))

            compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))

            compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))

            compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))

            compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))

            compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))

            compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))

            compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))

            compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))

            compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))

            attr [IterVar(threadIdx.z_1, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_1, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_1, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16 {

              pad_temp.shared[(threadIdx.x_1*7)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 446)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 1)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 445)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 2)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 444)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 3)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 443)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 4)] = @tir.if_then_else(((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 442)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 5)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*112) + (threadIdx.x_1*7)) < 217)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 441)], 0f32, dtype=float32)

              pad_temp.shared[((threadIdx.x_1*7) + 6)] = @tir.if_then_else((((2 <= (blockIdx.y + ry.outer)) && ((blockIdx.y + ry.outer) < 226)) && (((blockIdx.x*112) + (threadIdx.x_1*7)) < 216)), (float32*)placeholder_5[((((((rc.outer*50176) + (blockIdx.y*224)) + (ry.outer*224)) + (blockIdx.x*112)) + (threadIdx.x_1*7)) - 440)], 0f32, dtype=float32)

            }

            attr [IterVar(threadIdx.z_2, (nullptr), "ThreadIndex", "threadIdx.z")] "thread_extent" = 1;

            attr [IterVar(threadIdx.y_2, (nullptr), "ThreadIndex", "threadIdx.y")] "thread_extent" = 1;

            attr [IterVar(threadIdx.x_2, (nullptr), "ThreadIndex", "threadIdx.x")] "thread_extent" = 16;

            if @tir.likely((threadIdx.x_2 < 2), dtype=bool) {

              placeholder.shared[threadIdx.x_2] = (float32*)placeholder_4[(((((blockIdx.z*150) + (threadIdx.x_2*75)) + (rc.outer*25)) + (ry.outer*5)) + 4)]

            }

            compute_1[0] = ((float32*)compute_1[0] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[0]))

            compute_1[2] = ((float32*)compute_1[2] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[0]))

            compute_1[4] = ((float32*)compute_1[4] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[0]))

            compute_1[6] = ((float32*)compute_1[6] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[0]))

            compute_1[8] = ((float32*)compute_1[8] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[0]))

            compute_1[10] = ((float32*)compute_1[10] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[0]))

            compute_1[12] = ((float32*)compute_1[12] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[0]))

            compute_1[1] = ((float32*)compute_1[1] + ((float32*)pad_temp.shared[threadIdx.x]*(float32*)placeholder.shared[1]))

            compute_1[3] = ((float32*)compute_1[3] + ((float32*)pad_temp.shared[(threadIdx.x + 16)]*(float32*)placeholder.shared[1]))

            compute_1[5] = ((float32*)compute_1[5] + ((float32*)pad_temp.shared[(threadIdx.x + 32)]*(float32*)placeholder.shared[1]))

            compute_1[7] = ((float32*)compute_1[7] + ((float32*)pad_temp.shared[(threadIdx.x + 48)]*(float32*)placeholder.shared[1]))

            compute_1[9] = ((float32*)compute_1[9] + ((float32*)pad_temp.shared[(threadIdx.x + 64)]*(float32*)placeholder.shared[1]))

            compute_1[11] = ((float32*)compute_1[11] + ((float32*)pad_temp.shared[(threadIdx.x + 80)]*(float32*)placeholder.shared[1]))

            compute_1[13] = ((float32*)compute_1[13] + ((float32*)pad_temp.shared[(threadIdx.x + 96)]*(float32*)placeholder.shared[1]))

          }

        }

        compute[((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x)] = max((float32*)compute_1[0], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 16)] = max((float32*)compute_1[2], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 32)] = max((float32*)compute_1[4], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 48)] = max((float32*)compute_1[6], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 64)] = max((float32*)compute_1[8], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 80)] = max((float32*)compute_1[10], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 96)] = max((float32*)compute_1[12], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50176)] = max((float32*)compute_1[1], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50192)] = max((float32*)compute_1[3], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50208)] = max((float32*)compute_1[5], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50224)] = max((float32*)compute_1[7], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50240)] = max((float32*)compute_1[9], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50256)] = max((float32*)compute_1[11], 0f32)

        compute[(((((blockIdx.z*100352) + (blockIdx.y*224)) + (blockIdx.x*112)) + threadIdx.x) + 50272)] = max((float32*)compute_1[13], 0f32)

      }

    }

     

    概括

    本节内容

    • 如何使用 TOPI API 进行 numpy算子的常见操作。
    • TOPI 如何促进上下文的通用调度和算子融合,生成优化的内核代码。

    参考链接:

    https://tvm.apache.org/docs/tutorials/topi/intro_topi.html#sphx-glr-tutorials-topi-intro-topi-py

    人工智能芯片与自动驾驶
  • 相关阅读:
    7503E-M-irf2配置以及bfd配置
    nltk_29_pickle保存和导入分类器
    nltk_28Twitter情感分析模型
    美国在研新药_读取单个PDF
    Python:eval的妙用和滥用
    opencv_判断两张图片是否相同
    Make 命令教程
    pdf在线处理网站
    K-Means clusternig example with Python and Scikit-learn(推荐)
    自然语言27_Converting words to Features with NLTK
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/15374878.html
Copyright © 2011-2022 走看看