zoukankan      html  css  js  c++  java
  • nyoj 164 Game of Connections

     

    Game of Connections

    时间限制:1000 ms  |  内存限制:65535 KB
    难度:3
     
    描述
    This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another. 
    And, no two segments are allowed to intersect. 
    It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
     
    输入
    Each line of the input file will be a single positive number n, except the last line, which is a number -1.
    You may assume that 1 <= n <= 100.
    输出
    For each n, print in a single line the number of ways to connect the 2n numbers into pairs
    样例输入
    2
    3
    -1
    样例输出
    2
    5
    来源
    POJ
    上传者
    iphxer
    求卡特南数 我直接打表的
    嘿嘿标程是用java 写的 其实我也想用java来写的 java写大数挺好的
    View Code
      1  
      2 #include <stdio.h>
      3 
      4 char list[100][100]={
      5   "1",
      6   "2",
      7   "5",
      8   "14",
      9   "42",
     10   "132",
     11   "429",
     12   "1430",
     13   "4862",
     14   "16796",
     15   "58786",
     16   "208012",
     17   "742900",
     18   "2674440",
     19   "9694845",
     20   "35357670",
     21   "129644790",
     22   "477638700",
     23   "1767263190",
     24   "6564120420",
     25   "24466267020",
     26   "91482563640",
     27   "343059613650",
     28   "1289904147324",
     29   "4861946401452",
     30   "18367353072152",
     31   "69533550916004",
     32   "263747951750360",
     33   "1002242216651368",
     34   "3814986502092304",
     35   "14544636039226909",
     36   "55534064877048198",
     37   "212336130412243110",
     38   "812944042149730764",
     39   "3116285494907301262",
     40   "11959798385860453492",
     41   "45950804324621742364",
     42   "176733862787006701400",
     43   "680425371729975800390",
     44   "2622127042276492108820",
     45   "10113918591637898134020",
     46   "39044429911904443959240",
     47   "150853479205085351660700",
     48   "583300119592996693088040",
     49   "2257117854077248073253720",
     50   "8740328711533173390046320",
     51   "33868773757191046886429490",
     52   "131327898242169365477991900",
     53   "509552245179617138054608572",
     54   "1978261657756160653623774456",
     55   "7684785670514316385230816156",
     56   "29869166945772625950142417512",
     57   "116157871455782434250553845880",
     58   "451959718027953471447609509424",
     59   "1759414616608818870992479875972",
     60   "6852456927844873497549658464312",
     61   "26700952856774851904245220912664",
     62   "104088460289122304033498318812080",
     63   "405944995127576985730643443367112",
     64   "1583850964596120042686772779038896",
     65   "6182127958584855650487080847216336",
     66   "24139737743045626825711458546273312",
     67   "94295850558771979787935384946380125",
     68   "368479169875816659479009042713546950",
     69   "1440418573150919668872489894243865350",
     70   "5632681584560312734993915705849145100",
     71   "22033725021956517463358552614056949950",
     72   "86218923998960285726185640663701108500",
     73   "337485502510215975556783793455058624700",
     74   "1321422108420282270489942177190229544600",
     75   "5175569924646105559418940193995065716350",
     76   "20276890389709399862928998568254641025700",
     77   "79463489365077377841208237632349268884500",
     78   "311496878311103321137536291518809134027240",
     79   "1221395654430378811828760722007962130791020",
     80   "4790408930363303911328386208394864461024520",
     81   "18793142726809884575211361279087545193250040",
     82   "73745243611532458459690151854647329239335600",
     83   "289450081175264899454283846029490767264392230",
     84   "1136359577947336271931632877004667456667613940",
     85   "4462290049988320482463241297506133183499654740",
     86   "17526585015616776834735140517915655636396234280",
     87   "68854441132780194707888052034668647142985206100",
     88   "270557451039395118028642463289168566420671280440",
     89   "1063353702922273835973036658043476458723103404520",
     90   "4180080073556524734514695828170907458428751314320",
     91   "16435314834665426797069144960762886143367590394940",
     92   "64633260585762914370496637486146181462681535261000",
     93   "254224158304000796523953440778841647086547372026600",
     94   "1000134600800354781929399250536541864362461089950800",
     95   "3935312233584004685417853572763349509774031680023800",
     96   "15487357822491889407128326963778343232013931127835600",
     97   "60960876535340415751462563580829648891969728907438000",
     98   "239993345518077005168915776623476723006280827488229600",
     99   "944973797977428207852605870454939596837230758234904050",
    100   "3721443204405954385563870541379246659709506697378694300",
    101   "14657929356129575437016877846657032761712954950899755100",
    102   "57743358069601357782187700608042856334020731624756611000",
    103   "227508830794229349661819540395688853956041682601541047340",
    104   "896519947090131496687170070074100632420837521538745909320"
    105 };
    106 
    107 int main(void)
    108 {
    109  int k;
    110  while (scanf("%ld",&k)==1)
    111  {
    112   if (k==-1)
    113    break;
    114   printf("%s\n",list[k-1]);
    115  }
    116  return 0;
    117 }
    118         
  • 相关阅读:
    HDU1050
    POJ3528移石头
    CodeForces230A
    lca学习题
    rmq的st算法模板题 nyoj 119
    rmq问题和lca可以相互转化
    rmq算法,利用倍增思想
    poj 1274 基础二分最大匹配
    hdu 1520 树形dp入门题
    poj 1466 最大独立集
  • 原文地址:https://www.cnblogs.com/wujianwei/p/2637031.html
Copyright © 2011-2022 走看看