zoukankan      html  css  js  c++  java
  • 插头dp练习

    最近学了插头dp,准备陆续更新插头dp类练习。

    学习论文还是cdq那篇《基于连通性状态压缩的动态规划问题》

    基本的想法都讲得很通透了,接下来就靠自己yy了。

    还有感谢kuangbin大大的专题练习。

    首先入门肯定写个n*m*state的插头dp,没为什么,这东西好写啊~

    然后你就想着,当n*m特别大的时候我该怎么解决呢(m不可能特别大,因为他决定了状态数state)。

    你会发现这个dp只针对前一种状态和后一种状态进行转移。

    所以你能最后把他压缩成2*state的插头dp,当然这么写肯定是很麻烦的写法,但是极为节省空间。

    首先是基础题:

    hdu 1693

    Eat the Trees

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4168    Accepted Submission(s): 2091


    Problem Description
    Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a strong hero in the first period of the game. When the game goes to end however, Pudge is not a strong hero any more.
    So Pudge’s teammates give him a new assignment—Eat the Trees!

    The trees are in a rectangle N * M cells in size and each of the cells either has exactly one tree or has nothing at all. And what Pudge needs to do is to eat all trees that are in the cells.
    There are several rules Pudge must follow:
    I. Pudge must eat the trees by choosing a circuit and he then will eat all trees that are in the chosen circuit.
    II. The cell that does not contain a tree is unreachable, e.g. each of the cells that is through the circuit which Pudge chooses must contain a tree and when the circuit is chosen, the trees which are in the cells on the circuit will disappear.
    III. Pudge may choose one or more circuits to eat the trees.

    Now Pudge has a question, how many ways are there to eat the trees?
    At the picture below three samples are given for N = 6 and M = 3(gray square means no trees in the cell, and the bold black line means the chosen circuit(s))

     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
    For each case, the first line contains the integer numbers N and M, 1<=N, M<=11. Each of the next N lines contains M numbers (either 0 or 1) separated by a space. Number 0 means a cell which has no trees and number 1 means a cell that has exactly one tree.
     
    Output
    For each case, you should print the desired number of ways in one line. It is guaranteed, that it does not exceed 263 – 1. Use the format in the sample.
     
    Sample Input
    2 6 3 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 2 4 1 1 1 1 1 1 1 1
     
    Sample Output
    Case 1: There are 3 ways to eat the trees. Case 2: There are 2 ways to eat the trees.

    基础题嘛,很容易想到转移方程。鉴于我嫌麻烦,写了空间复杂度较高的代码:
     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #define clr(x) memset(x,0,sizeof(x))
     5 #define LL long long
     6 using namespace std;
     7 LL dp[20][20][1<<12+1];
     8 int mp[100][100];
     9 int main()
    10 {
    11     int T,n,m,k,t1,t2,kase=0;
    12     scanf("%d",&T);
    13     while(T--)
    14     {
    15         scanf("%d%d",&n,&m);
    16         for(int i=1;i<=n;i++)
    17             for(int j=1;j<=m;j++)
    18                 scanf("%d",&mp[i][j]);
    19         clr(dp);
    20         dp[0][m][0]=1;
    21         for(int i=1;i<=n;i++)
    22         {
    23             for(int k=0;k<(1<<m);k++)
    24             {
    25                 dp[i][0][k<<1]=dp[i-1][m][k];
    26             }
    27             for(int j=1;j<=m;j++)
    28             {
    29                 for(int k=0;k<(1<<(m+1));k++)
    30                 {
    31                     t2=1<<j;
    32                     t1=1<<(j-1);
    33                     if(mp[i][j])
    34                     {
    35                         if(((k&t2)==0 && (k&t1)!=0) || ((k&t2)!=0 && (k&t1)==0))
    36                             dp[i][j][k]+=dp[i][j-1][k];
    37                         dp[i][j][k]+=dp[i][j-1][k^t1^t2];
    38                     }
    39                     else
    40                     {
    41                        if((k&t1)==0&&(k&t2)==0)dp[i][j][k]+=dp[i][j-1][k];
    42                     }
    43                 }
    44             }
    45         }
    46         printf("Case %d: There are %lld ways to eat the trees.
    ",++kase,dp[n][m][0]);
    47     }
    48     return 0;
    49 }
    插头dp

    fzu 1977

    Pandora adventure

    Problem Description

    The pollution of the earth is so serious that people can not survive any more. Fortunately, people have found a new planet that maybe has life, and we call it "Pandora Planet".

    Leonardo Da Vinci is the only astronaut on the earth. He will be sent to the Pandora Planet to gather some plant specimens and go back. The plant specimen is important to the people to decide whether the planet is fit to live or not.

    Assuming that Da Vinci can only move in an N×M grid. The positions of the plant specimens he wants to collect are all marked by the satellite. His task is to find a path to collect all the plant specimens and return to the spaceship. There are some savage beasts in the planet. Da Vinci can not investigate the grid with the savage beast. These grids are also marked by the satellite. In order to save time Da Vinci could only visit each grid exactly once and also return to the start grid, that is, you can not visit a grid twice except the start grid. You should note that you can choose any grid as the start grid.

    Now he wants to know the number of different paths he can collect all the plant specimens. We only care about the path and ignore where the start grid is, so the two paths in Figure 1 are considered as the same.

    Figure 1

    Input

    The first line of the input contains an integer T (T≤100), indicating the number of cases. Each case begins with a line containing two integers N and M (1≤N, M≤12), the size of the planet is N×M. Each of the following N lines contains M characters Gij(1≤i≤N, 1≤j≤M), Gij denotes the status of the grid in row i and column j, where 'X' denotes the grid with savage beast, '*' denotes the safe grid that you can decide to go or not, 'O' denotes the plant specimen you should collect. We guarantee that there are at least three plant specimens in the map.

    Output

    For each test case, print a line containing the test case number (beginning with 1) and the number of different paths he can collect all the plant specimens. You can make sure that the answer will fit in a 64-bit signed integer.

    Sample Input

    2 2 2 OO O* 4 4 ***O XO** **O* XX**

    Sample Output

    Case 1: 1 Case 2: 7 

    三种格子:必经过,不能经过,经不经过无所谓。然后求只有一条的欧拉回路。
    在kuangbin模板上改进,使用括号序列求解。
    我们增加一个标记位来标记是否形成回路。
    若该状态形成回路且各位状态不全为0,则不转移。
    若该状态形成回路各位状态都为0,但后续的点有必过点,则该状态不转移。
    必经过和经不经过无所谓点转移相似,后者多一个上插头和左插头皆为0下的转移状态。
    不能经过点的所有状态都转移至下一状态,该点插头不变(都为0)。
      1 #include<cstdio>
      2 #include<iostream>
      3 #include<cstring>
      4 #define clr(x) memset(x,0,sizeof(x))
      5 #define clr_1(x) memset(x,-1,sizeof(x))
      6 #define LL long long 
      7 #define HASH 10007
      8 #define STATE 1000010
      9 using namespace std;
     10 struct hashmap
     11 {
     12     int size;
     13     int next[STATE],state[STATE],head[HASH];
     14     LL fas[STATE];
     15     void init()
     16     {
     17         size=0;
     18         clr_1(head);
     19     }
     20     void add(int st,LL solu)
     21     {
     22         int k=st%HASH;
     23         for(int i=head[k];i!=-1;i=next[i])
     24             if(st==state[i])
     25             {
     26                 fas[i]+=solu;
     27                 return;
     28             }
     29         next[++size]=head[k];
     30         fas[size]=solu;
     31         state[size]=st;
     32         head[k]=size;
     33         return ;
     34     }
     35 }dp[2];
     36 int maped[20][20],endflag;
     37 char s[20];
     38 int code[20];
     39 void init(int n,int m)
     40 {
     41     clr(maped);
     42     for(int i=1;i<=n;i++)
     43     {
     44         scanf("%s",s);
     45         for(int j=0;j<m;j++)
     46         {
     47             if(s[j]=='*')
     48               maped[i][j+1]=1;
     49             if(s[j]=='O')
     50               maped[i][j+1]=2;
     51         }
     52     }
     53     return ;
     54 }
     55 void decode(int st,int *code,int m)
     56 {
     57     endflag=st&1;
     58     st>>=1;
     59     for(int i=m;i>=0;i--)
     60     {
     61         code[i]=st&3;
     62         st>>=2;
     63     }
     64     return ;
     65 }
     66 int encode(int *code,int m)
     67 {
     68     int st=0;
     69     for(int i=0;i<=m;i++)
     70     {
     71         st<<=2;
     72         st|=code[i];
     73     }
     74     st<<=1;
     75     st|=endflag;
     76     return st;
     77 }
     78 void shift(int *code,int m)
     79 {
     80     for(int i=m;i>0;i--)
     81         code[i]=code[i-1];
     82     code[0]=0;
     83     return ;
     84 }
     85 void dpblank(int i,int j,int cnt,int m)
     86 {
     87     int top,left,up;
     88     for(int it=1;it<=dp[cnt].size;it++)
     89     {
     90         decode(dp[cnt].state[it],code,m);
     91         left=code[j-1];
     92         up=code[j];
     93         if(endflag &&((dp[cnt].state[it]>>1)>0 || maped[i][j]==2)) continue;
     94         if(left && up)
     95         {
     96             if(left!=up)
     97             {
     98                 code[j]=code[j-1]=0;
     99                 if(left==1) endflag=1;
    100                 if(j==m) shift(code,m); 
    101                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);
    102             }
    103             else
    104             {
    105                 if(left==2)
    106                 {
    107                     top=0;
    108                     for(int k=j-2;k>=0;k--)
    109                     {
    110                         if(code[k]==2)
    111                             top++;
    112                         if(code[k]==1)
    113                             if(top>0)
    114                                 top--;
    115                             else
    116                                 {
    117                                     code[k]=2;
    118                                     break;
    119                                 }
    120                     }
    121                 }
    122                 else
    123                 {
    124                     top=0;
    125                     for(int k=j+1;k<=m;k++)
    126                     {
    127                         if(code[k]==1)
    128                             top++;
    129                         if(code[k]==2)
    130                             if(top>0)
    131                                 top--;
    132                             else
    133                                 {
    134                                     code[k]=1;
    135                                     break;
    136                                 }
    137                     }                
    138                 }
    139                 code[j]=code[j-1]=0;
    140                 if(j==m) shift(code,m);
    141                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);
    142             }
    143         }
    144         else if(left || up)
    145         {
    146             if(left) top=left;
    147             else top=up;
    148             if(maped[i][j+1])
    149             {
    150                 code[j-1]=0;
    151                 code[j]=top;
    152                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);                
    153             }
    154             if(maped[i+1][j])
    155             {
    156                 code[j-1]=top;
    157                 code[j]=0;
    158                 if(j==m) shift(code,m);
    159                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);                
    160             }
    161         }
    162         else
    163         {
    164             if(maped[i][j+1] && maped[i+1][j])
    165             {
    166                 code[j-1]=1;
    167                 code[j]=2;
    168                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);    
    169             }
    170             if(maped[i][j]==1)
    171             {
    172                 code[j-1]=code[j]=0;
    173                 if(j==m) shift(code,m);
    174                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);                        
    175             }        
    176         }        
    177     }
    178     return ;
    179 }
    180 void dpnone(int i,int j,int cnt,int m)
    181 {
    182     for(int it=1;it<=dp[cnt].size;it++)
    183     {
    184         decode(dp[cnt].state[it],code,m);
    185         if(endflag &&((dp[cnt].state[it]>>1)>0 || maped[i][j]==2)) continue;
    186         code[j]=code[j-1]=0;
    187         if(j==m) shift(code,m);
    188         dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);        
    189     }
    190     return ;
    191 }
    192 LL solve(int n,int m)
    193 {
    194     int cnt=0;
    195     LL ans=0;
    196     dp[cnt].init();
    197     dp[cnt].add(0,1);
    198     for(int i=1;i<=n;i++)
    199     {
    200         for(int j=1;j<=m;j++)
    201         {
    202             dp[cnt^1].init();
    203             if(maped[i][j]==0)
    204                 dpnone(i,j,cnt,m);
    205             else
    206                 dpblank(i,j,cnt,m);
    207             cnt^=1;
    208 /*            for(int it=1;it<=dp[cnt].size;it++)
    209             {
    210                 decode(dp[cnt].state[it],code,m);
    211                 for(int k=0;k<=m;k++)
    212                     printf("%d:%d ",k,code[k]);
    213                 printf("FLAG:%d fas:%lld
    ",endflag,dp[cnt].fas[it]);
    214             }
    215             printf("
    "); */
    216         }
    217     }
    218     for(int i=1;i<=dp[cnt].size;i++)
    219         ans+=dp[cnt].fas[i];
    220     return ans;
    221 }
    222 int main()
    223 {
    224     int T,n,m;
    225     scanf("%d",&T);
    226     for(int kase=1;kase<=T;kase++)
    227     {
    228         scanf("%d%d",&n,&m);
    229         init(n,m);
    230         printf("Case %d: %lld
    ",kase,solve(n,m));
    231     }
    232     return 0;
    233 }
    View Code

    hdu 1964

    Pipes

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 917    Accepted Submission(s): 448


    Problem Description
    The construction of office buildings has become a very standardized task. Pre-fabricated modules are combined according to the customer’s needs, shipped from a faraway factory, and assembled on the construction site. However, there are still some tasks that require careful planning, one example being the routing of pipes for the heating system. 

    Amodern office building ismade up of squaremodules, one on each floor being a service module from which (among other things) hot water is pumped out to the other modules through the heating pipes. Each module (including the service module) will have heating pipes connecting it to exactly two of its two to four neighboring modules. Thus, the pipes have to run in a circuit, from the service module, visiting each module exactly once, before finally returning to the service module. Due to different properties of the modules, having pipes connecting a pair of adjacent modules comes at different costs. For example, some modules are separated by thick walls, increasing the cost of laying pipes. Your task is to, given a description of a floor of an office building, decide the cheapest way to route the heating pipes.
     
    Input
    The first line of input contains a single integer, stating the number of floors to handle. Then follow n floor descriptions, each beginning on a new line with two integers, 2 <= r <= 10 and 2 <= c <= 10, defining the size of the floor – r-by-c modules. Beginning on the next line follows a floor description in ASCII format, in total 2r + 1 rows, each with 2c + 2 characters, including the final newline. All floors are perfectly rectangular, and will always have an even number of modules. All interior walls are represented by numeric characters, ’0’ to ’9’, indicating the cost of routing pipes through the wall (see sample input).
     
    Output
    For each test case, output a single line with the cost of the cheapest route.
     
    Sample Input
    3 4 3 ####### # 2 3 # #1#9#1# # 2 3 # #1#7#1# # 5 3 # #1#9#1# # 2 3 # ####### 4 4 ######### # 2 3 3 # #1#9#1#4# # 2 3 6 # #1#7#1#5# # 5 3 1 # #1#9#1#7# # 2 3 0 # ######### 2 2 ##### # 1 # #2#3# # 4 # #####
     
    Sample Output
    28 45 10
     

    插头dp模板题,把方案数改成最小数量然后做点小修改就好了。拿上一题的模板做做就行。
      1 #include<cstdio>
      2 #include<iostream>
      3 #include<cstring>
      4 #define clr(x) memset(x,0,sizeof(x))
      5 #define clr_1(x) memset(x,-1,sizeof(x))
      6 #define LL long long 
      7 #define HASH 10007
      8 #define STATE 1000010
      9 using namespace std;
     10 struct hashmap
     11 {
     12     int size;
     13     int next[STATE],head[HASH];
     14     LL state[STATE];
     15     LL fas[STATE];
     16     void init()
     17     {
     18         size=0;
     19         clr_1(head);
     20     }
     21     void add(LL st,LL solu)
     22     {
     23         int k=st%HASH;
     24         for(int i=head[k];i!=-1;i=next[i])
     25             if(st==state[i])
     26             {
     27                 if(fas[i]>solu)
     28                     fas[i]=solu;
     29                 return;
     30             }
     31         next[++size]=head[k];
     32         fas[size]=solu;
     33         state[size]=st;
     34         head[k]=size;
     35         return ;
     36     }
     37 }dp[2];
     38 int maped[40][40],endflag;
     39 char s[40];
     40 int code[40];
     41 void init(int n,int m)
     42 {
     43     clr(maped);
     44     fgets(s,100,stdin);
     45     for(int i=1;i<=n;i++)
     46     {
     47         fgets(s,100,stdin);
     48         for(int j=0;j<m;j++)
     49         {
     50             if(s[j]==' ')
     51               maped[i][j+1]=11;
     52             if(s[j]>='0' && s[j]<='9')
     53               maped[i][j+1]=s[j]-'0'+1;
     54         }
     55     }
     56     return ;
     57 }
     58 void decode(LL st,int *code,int m)
     59 {
     60     endflag=st&1;
     61     st>>=1;
     62     for(int i=m;i>=0;i--)
     63     {
     64         code[i]=st&3;
     65         st>>=2;
     66     }
     67     return ;
     68 }
     69 LL encode(int *code,int m)
     70 {
     71     LL st=0;
     72     for(int i=0;i<=m;i++)
     73     {
     74         st<<=2;
     75         st|=code[i];
     76     }
     77     st<<=1;
     78     st|=endflag;
     79     return st;
     80 }
     81 void shift(int *code,int m)
     82 {
     83     for(int i=m;i>0;i--)
     84         code[i]=code[i-1];
     85     code[0]=0;
     86     return ;
     87 }
     88 void dpblank(int i,int j,int cnt,int m)
     89 {
     90     int top,left,up;
     91     LL cost;
     92     if(maped[i][j]==11)
     93         cost=0;
     94     else
     95         cost=1LL*(maped[i][j]-1);
     96     for(int it=1;it<=dp[cnt].size;it++)
     97     {
     98         decode(dp[cnt].state[it],code,m);
     99         if(endflag &&((dp[cnt].state[it]>>1)>0 || maped[i][j]==2)) continue;
    100         left=code[j-1];
    101         up=code[j];
    102         if(left && up)
    103         {
    104             if(left!=up)
    105             {
    106                 code[j]=code[j-1]=0;
    107                 if(left==1) endflag=1;
    108                 if(j==m) shift(code,m); 
    109                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);
    110             }
    111             else
    112             {
    113                 if(left==2)
    114                 {
    115                     top=0;
    116                     for(int k=j-2;k>=0;k--)
    117                     {
    118                         if(code[k]==2)
    119                             top++;
    120                         if(code[k]==1)
    121                             if(top>0)
    122                                 top--;
    123                             else
    124                                 {
    125                                     code[k]=2;
    126                                     break;
    127                                 }
    128                     }
    129                 }
    130                 else
    131                 {
    132                     top=0;
    133                     for(int k=j+1;k<=m;k++)
    134                     {
    135                         if(code[k]==1)
    136                             top++;
    137                         if(code[k]==2)
    138                             if(top>0)
    139                                 top--;
    140                             else
    141                                 {
    142                                     code[k]=1;
    143                                     break;
    144                                 }
    145                     }                
    146                 }
    147                 code[j]=code[j-1]=0;
    148                 if(j==m) shift(code,m);
    149                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);
    150             }
    151         }
    152         else if(left || up)
    153         {
    154             if(left) top=left;
    155             else top=up;
    156             if(maped[i][j+1])
    157             {
    158                 code[j-1]=0;
    159                 code[j]=top;
    160                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                
    161             }
    162             if(maped[i+1][j])
    163             {
    164                 code[j-1]=top;
    165                 code[j]=0;
    166                 if(j==m) shift(code,m);
    167                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                
    168             }
    169         }
    170         else
    171         {
    172             if(maped[i][j+1] && maped[i+1][j])
    173             {
    174                 code[j-1]=1;
    175                 code[j]=2;
    176                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);    
    177             }
    178             if(maped[i][j]!=11)
    179             {
    180                 code[j-1]=code[j]=0;
    181                 if(j==m) shift(code,m);
    182                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);                        
    183             }        
    184         }        
    185     }
    186     return ;
    187 }
    188 void dpnone(int i,int j,int cnt,int m)
    189 {
    190     for(int it=1;it<=dp[cnt].size;it++)
    191     {
    192         decode(dp[cnt].state[it],code,m);
    193         if(endflag &&((dp[cnt].state[it]>>1)>0 || maped[i][j]==2)) continue;
    194         if(j==m) shift(code,m);
    195         dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);
    196     }
    197     return ;
    198 }
    199 LL solve(int n,int m)
    200 {
    201     int cnt=0;
    202     LL ans=0;
    203     dp[cnt].init();
    204     dp[cnt].add(0,0);
    205     for(int i=1;i<=n;i++)
    206     {
    207         for(int j=1;j<=m;j++)
    208         {
    209             dp[cnt^1].init();
    210             if(maped[i][j]==0)
    211                 dpnone(i,j,cnt,m);
    212             else
    213                 dpblank(i,j,cnt,m);
    214             cnt^=1;
    215 /*            for(int it=1;it<=dp[cnt].size;it++)
    216             {
    217                 decode(dp[cnt].state[it],code,m);
    218                 for(int k=0;k<=m;k++)
    219                     printf("%d:%d ",k,code[k]);
    220                 printf("FLAG:%d fas:%lld
    ",endflag,dp[cnt].fas[it]);
    221             }
    222             printf("
    "); */
    223         }
    224     }
    225     for(int i=1;i<=dp[cnt].size;i++)
    226         ans+=dp[cnt].fas[i];
    227     return ans;
    228 }
    229 int main()
    230 {
    231     int T,n,m;
    232     scanf("%d",&T);
    233     for(int kase=1;kase<=T;kase++)
    234     {
    235         scanf("%d%d",&n,&m);
    236         n=2*n+1;
    237         m=2*m+1;
    238         init(n,m);
    239         printf("%lld
    ",solve(n,m));
    240     }
    241     return 0;
    242 }
    View Code

     hdu 3377

    Plan

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1436    Accepted Submission(s): 517


    Problem Description
    One day, Resty comes to an incredible world to seek Eve -- The origin of life. Lilith, the sister of Eve, comes with him. Although Resty wants to find Eve as soon as possible, Lilith likes to play games so much that you can't make her make any move if you don't play with her.

    Now they comes to the magical world and Lilish ask Resty to play with her.

    The game is following :
    Now the world is divided into a m * n grids by Lilith, and Lilith gives each grid a score.
    So we can use a matrix to describe it.
    You should come from cell(0, 0) to cell(m-1, n-1) (Up-Left to Down-Right) and try to colloct as more score as possible.
    According to Lilish's rule, you can't arrive at each cell more than once.

    Resty knows that Lilish will be easy to find the max score, and he doesn't want to lose the game.
    So he want to find the game plan to reach the max score.

    Your task is to calculate the max score that Lilish will find, the map is so small so it shouldn't be difficult for you, right?
     
    Input
    The input consists of more than one testdata.
    Process to the END OF DATA.
    For each test data :
    the first live give m and n. (1<=m<=8, 1<=n<=9)
    following m lines, each contain n number to give you the m*n matrix.
    each number in the matrix is between -2000 and 2000
     
    Output
    Output Format is "Case ID: ANS" one line for each data
    Don't print any empty line to the output
     
    Sample Input
    2 2 1 2 3 1 3 3 0 -20 100 1 -20 -20 1 1 1
     
    Sample Output
    Case 1: 5 Case 2: 61

    这题仍然可以用回路做,value数组存经过的贡献,maped存是否可走(可走,不可走,必过)。
    你在原图周围填上两圈,最外圈和原图里都是可走区域,次外圈除了两个格子全为不可走区域(两个格子是和(0,0)相邻任意一个格子及(n-1,m-1)相邻的任意一个格子)。特别的原来的(0,0)(n-1,m-1)这两个格子以及最外圈的任意一个格子设置为必过格子,然后用上一题的类似的回路模板可做。
    样子类似于:
    1 1 1 1 1 1 1 2
    1 0 1 0 0 0 0 1
    1 0 2 1 1 1 0 1
    1 0 1 1 1 2 0 1
    1 0 0 0 0 1 0 1
    1 1 1 1 1 1 1 1
    这样的一个矩阵。
    然后代码(405ms):
      1 #include<cstdio>
      2 #include<iostream>
      3 #include<cstring>
      4 #define clr(x) memset(x,0,sizeof(x))
      5 #define clr_1(x) memset(x,-1,sizeof(x))
      6 #define LL long long 
      7 #define HASH 10007
      8 #define STATE 1000010
      9 using namespace std;
     10 struct hashmap
     11 {
     12     int size;
     13     int next[STATE],head[HASH];
     14     LL state[STATE];
     15     LL fas[STATE];
     16     void init()
     17     {
     18         size=0;
     19         clr_1(head);
     20     }
     21     void add(LL st,LL solu)
     22     {
     23         int k=st%HASH;
     24         for(int i=head[k];i!=-1;i=next[i])
     25             if(st==state[i])
     26             {
     27                 if(fas[i]<solu)
     28                     fas[i]=solu;
     29                 return;
     30             }
     31         next[++size]=head[k];
     32         fas[size]=solu;
     33         state[size]=st;
     34         head[k]=size;
     35         return ;
     36     }
     37 }dp[2];
     38 int maped[40][40],value[40][40],endflag;
     39 char s[40];
     40 int code[40];
     41 void init(int &n,int &m)
     42 {
     43     clr(maped);
     44     clr(value);
     45     for(int i=2;i<=n+1;i++)
     46     {
     47         for(int j=2;j<=m+1;j++)
     48         {
     49             maped[i][j]=1;
     50             scanf("%d",&value[i][j]);
     51         }
     52     }
     53     n+=3;
     54     m+=3;
     55     for(int i=0;i<=n;i++)
     56         maped[i][0]=maped[i][m]=1;
     57     for(int i=0;i<=m;i++)
     58         maped[0][i]=maped[n][i]=1;
     59     maped[1][2]=1;
     60     maped[n-1][m-2]=1;
     61     maped[2][2]=maped[n-2][m-2]=2;    
     62     maped[n][m]=2;
     63 /*    for(int i=0;i<=n;i++)
     64     {
     65         for(int j=0;j<=m;j++)
     66             printf("%d ",maped[i][j]);
     67         printf("
    ");
     68     }*/
     69     return ;
     70 }
     71 void decode(LL st,int *code,int m)
     72 {
     73     endflag=st&1;
     74     st>>=1;
     75     for(int i=m;i>=0;i--)
     76     {
     77         code[i]=st&3;
     78         st>>=2;
     79     }
     80     return ;
     81 }
     82 LL encode(int *code,int m)
     83 {
     84     LL st=0;
     85     for(int i=0;i<=m;i++)
     86     {
     87         st<<=2;
     88         st|=code[i];
     89     }
     90     st<<=1;
     91     st|=endflag;
     92     return st;
     93 }
     94 void shift(int *code,int m)
     95 {
     96     for(int i=m;i>0;i--)
     97         code[i]=code[i-1];
     98     code[0]=0;
     99     return ;
    100 }
    101 void dpblank(int i,int j,int cnt,int m)
    102 {
    103     int top,left,up;
    104     LL cost=1LL*value[i][j];
    105     for(int it=1;it<=dp[cnt].size;it++)
    106     {
    107         decode(dp[cnt].state[it],code,m);
    108         if(endflag &&((dp[cnt].state[it]>>1)>0 || maped[i][j]==2)) continue;
    109         left=code[j-1];
    110         up=code[j];
    111         if(left && up)
    112         {
    113             if(left!=up)
    114             {
    115                 code[j]=code[j-1]=0;
    116                 if(left==1) endflag=1;
    117                 if(j==m) shift(code,m); 
    118                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);
    119             }
    120             else
    121             {
    122                 if(left==2)
    123                 {
    124                     top=0;
    125                     for(int k=j-2;k>=0;k--)
    126                     {
    127                         if(code[k]==2)
    128                             top++;
    129                         if(code[k]==1)
    130                             if(top>0)
    131                                 top--;
    132                             else
    133                                 {
    134                                     code[k]=2;
    135                                     break;
    136                                 }
    137                     }
    138                 }
    139                 else
    140                 {
    141                     top=0;
    142                     for(int k=j+1;k<=m;k++)
    143                     {
    144                         if(code[k]==1)
    145                             top++;
    146                         if(code[k]==2)
    147                             if(top>0)
    148                                 top--;
    149                             else
    150                                 {
    151                                     code[k]=1;
    152                                     break;
    153                                 }
    154                     }                
    155                 }
    156                 code[j]=code[j-1]=0;
    157                 if(j==m) shift(code,m);
    158                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);
    159             }
    160         }
    161         else if(left || up)
    162         {
    163             if(left) top=left;
    164             else top=up;
    165             if(maped[i][j+1])
    166             {
    167                 code[j-1]=0;
    168                 code[j]=top;
    169                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                
    170             }
    171             if(maped[i+1][j])
    172             {
    173                 code[j-1]=top;
    174                 code[j]=0;
    175                 if(j==m) shift(code,m);
    176                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                
    177             }
    178         }
    179         else
    180         {
    181             if(maped[i][j+1] && maped[i+1][j])
    182             {
    183                 code[j-1]=1;
    184                 code[j]=2;
    185                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);    
    186             }
    187             if(maped[i][j]==1)
    188             {
    189                 code[j-1]=code[j]=0;
    190                 if(j==m) shift(code,m);
    191                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);                        
    192             }        
    193         }        
    194     }
    195     return ;
    196 }
    197 void dpnone(int i,int j,int cnt,int m)
    198 {
    199     for(int it=1;it<=dp[cnt].size;it++)
    200     {
    201         decode(dp[cnt].state[it],code,m);
    202         if(endflag &&((dp[cnt].state[it]>>1)>0 || maped[i][j]==2)) continue;
    203         if(j==m) shift(code,m);
    204         dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);
    205     }
    206     return ;
    207 }
    208 LL solve(int n,int m)
    209 {
    210     int cnt=0;
    211     LL ans=0;
    212     dp[cnt].init();
    213     dp[cnt].add(0,0);
    214     for(int i=0;i<=n;i++)
    215     {
    216         for(int j=0;j<=m;j++)
    217         {
    218             dp[cnt^1].init();
    219             if(maped[i][j]==0)
    220                 dpnone(i,j,cnt,m);
    221             else
    222                 dpblank(i,j,cnt,m);
    223             cnt^=1;
    224 /*            for(int it=1;it<=dp[cnt].size;it++)
    225             {
    226                 decode(dp[cnt].state[it],code,m);
    227                 for(int k=0;k<=m;k++)
    228                     printf("%d:%d ",k,code[k]);
    229                 printf("FLAG:%d fas:%lld
    ",endflag,dp[cnt].fas[it]);
    230             }
    231             printf("
    "); */
    232         }
    233     }
    234     for(int i=1;i<=dp[cnt].size;i++)
    235         ans+=dp[cnt].fas[i];
    236     return ans;
    237 }
    238 int main()
    239 {
    240     int n,m,kase=0;
    241     while(scanf("%d%d",&n,&m)!=EOF)
    242     {
    243         init(n,m);
    244         printf("Case %d: %lld
    ",++kase,solve(n,m));
    245     }
    246     return 0;
    247 }
    View Code

    然后我之前是用独立插头做的,终于过了(78ms):

      1 #include<cstdio>
      2 #include<iostream>
      3 #include<cstring>
      4 #define clr(x) memset(x,0,sizeof(x))
      5 #define clr_1(x) memset(x,-1,sizeof(x))
      6 #define LL long long 
      7 #define HASH 10007
      8 #define STATE 1000010
      9 using namespace std;
     10 struct hashmap//hash表存状态及大的数和 
     11 {
     12     int size;
     13     int next[STATE],head[HASH];
     14     LL state[STATE];
     15     LL fas[STATE];
     16     void init()//清空 
     17     {
     18         size=0;
     19         clr_1(head);
     20     }
     21     void add(LL st,LL solu)//状态加入,若已有该状态则取较大者 
     22     {
     23         int k=st%HASH;
     24         for(int i=head[k];i!=-1;i=next[i])
     25             if(st==state[i])
     26             {
     27                 if(fas[i]<solu)
     28                     fas[i]=solu;
     29                 return;
     30             }
     31         next[++size]=head[k];
     32         fas[size]=solu;
     33         state[size]=st;
     34         head[k]=size;
     35         return ;
     36     }
     37 }dp[2];
     38 int maped[40][40];
     39 int code[40];
     40 void init(int n,int m)//初始化值,读入maped 
     41 {
     42     for(int i=1;i<=n;i++)
     43     {
     44         for(int j=1;j<=m;j++)
     45         {
     46             scanf("%d",&maped[i][j]);
     47         }
     48     }
     49     return ;
     50 }
     51 void decode(LL st,int *code,int m)//解码,括号序列 
     52 {
     53     for(int i=m;i>=0;i--)
     54     {
     55         code[i]=st&3;
     56         st>>=2;
     57     }
     58     return ;
     59 }
     60 LL encode(int *code,int m)//编码,括号序列 
     61 {
     62     LL st=0;
     63     for(int i=0;i<=m;i++)
     64     {
     65         st<<=2;
     66         st|=code[i];
     67     }
     68     return st;
     69 }
     70 void shift(int *code,int m)//左移操作 
     71 {
     72     for(int i=m;i>0;i--)
     73         code[i]=code[i-1];
     74     code[0]=0;
     75     return ;
     76 }
     77 void dpblank(int i,int j,int cnt,int n,int m)//空格子状态转移 
     78 {
     79     int top,left,up;
     80     LL cost;
     81     cost=1LL*maped[i][j];
     82     if(i==1 &&j==1)//i=1 且 j=1时加入只有下独立插头 和 右独立插头的状态 
     83     {
     84         decode(dp[cnt].state[1],code,m);
     85         if(j+1<=m)
     86         {
     87             code[j-1]=0;
     88             code[j]=3;
     89             dp[cnt^1].add(encode(code,m),dp[cnt].fas[1]+cost);    
     90         }    
     91         if(i+1<=n)
     92         {
     93             code[j-1]=3;
     94             code[j]=0;
     95             if(j==m) shift(code,m);
     96             dp[cnt^1].add(encode(code,m),dp[cnt].fas[1]+cost);                
     97         }
     98         return ;
     99     }
    100     if(i==n &&j==m)//i=n 且 j=m时截止单个独立插头的状态 
    101     {
    102         for(int it=1;it<=dp[cnt].size;it++)
    103         {
    104             decode(dp[cnt].state[it],code,m);
    105             code[j-1]=code[j]=0;
    106             if(j==m) shift(code,m);
    107             dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);            
    108         }
    109         return ;
    110     }
    111     for(int it=1;it<=dp[cnt].size;it++)
    112     {
    113         decode(dp[cnt].state[it],code,m);
    114         left=code[j-1];
    115         up=code[j];
    116         if(left && up)//上插头和左插头都存在 
    117         {
    118             if(left==3 || up==3)//存在一个独立插头
    119             {
    120                 if(up==2|| left==2)//若另一个插头为右括号插头,则找到对应的左括号插头变为独立插头 
    121                 {
    122                     top=0;
    123                     for(int k=j-2;k>=0;k--)
    124                     {
    125                         if(code[k]==2)
    126                             top++;
    127                         if(code[k]==1)
    128                             if(top>0)
    129                                 top--;
    130                             else
    131                                 {
    132                                     code[k]=3;
    133                                     break;
    134                                 }
    135                     }                        
    136                 }
    137                 else if(up==1 ||left==1)//若另一个插头为左括号插头,则找到对应的右括号插头变为独立插头 
    138                 {
    139                     top=0;
    140                     for(int k=j+1;k<=m;k++)
    141                     {
    142                         if(code[k]==1)
    143                             top++;
    144                         if(code[k]==2)
    145                             if(top>0)
    146                                 top--;
    147                             else
    148                                 {
    149                                     code[k]=3;
    150                                     break;
    151                                 }
    152                     }                                    
    153                 }
    154                 code[j]=code[j-1]=0;
    155                 if(j==m) shift(code,m);
    156                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);
    157             }
    158             else if(left!=up)//两个括号插头 
    159             {
    160                 if(left==1)//左右括号插头,不允许形成回路 
    161                     continue;
    162                 else//右左括号插头直接去掉 
    163                 {
    164                     code[j]=code[j-1]=0;
    165                     if(j==m) shift(code,m);
    166                     dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                    
    167                  } 
    168             }
    169             else
    170             {
    171                 if(left==2)//都是左括号插头,找到对应的第一个右括号插头变为左括号插头 
    172                 {
    173                     top=0;
    174                     for(int k=j-2;k>=0;k--)
    175                     {
    176                         if(code[k]==2)
    177                             top++;
    178                         if(code[k]==1)
    179                             if(top>0)
    180                                 top--;
    181                             else
    182                                 {
    183                                     code[k]=2;
    184                                     break;
    185                                 }
    186                     }
    187                 }
    188                 else//都是右括号插头,找到对应的第一个左括号插头变为右括号插头  
    189                 {
    190                     top=0;
    191                     for(int k=j+1;k<=m;k++)
    192                     {
    193                         if(code[k]==1)
    194                             top++;
    195                         if(code[k]==2)
    196                             if(top>0)
    197                                 top--;
    198                             else
    199                                 {
    200                                     code[k]=1;
    201                                     break;
    202                                 }
    203                     }                
    204                 }
    205                 code[j]=code[j-1]=0;
    206                 if(j==m) shift(code,m);
    207                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);
    208             }
    209         }
    210         else if(left || up)//仅有一个插头,则延伸插头 
    211         {
    212             if(left) top=left;
    213             else top=up;
    214             if(j+1<=m)//右延伸插头 
    215             {
    216                 code[j-1]=0;
    217                 code[j]=top;
    218                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                
    219             }
    220             if(i+1<=n)//下延伸插头 
    221             {
    222                 code[j-1]=top;
    223                 code[j]=0;
    224                 if(j==m) shift(code,m);
    225                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);                
    226             }
    227         }
    228         else//没有插头 
    229         {
    230             if(j+1<=m && i+1<=n)//下插头和左插头 
    231             {
    232                 code[j-1]=1;
    233                 code[j]=2;
    234                 dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]+cost);    
    235             }
    236             //可经过可不经过点则可以保持原样,没有插头 
    237             code[j-1]=code[j]=0;
    238             if(j==m) shift(code,m);
    239             dp[cnt^1].add(encode(code,m),dp[cnt].fas[it]);                            
    240         }        
    241     }
    242     return ;
    243 }
    244 LL solve(int n,int m)
    245 {
    246     int cnt=0;
    247     LL ans=0;
    248     if(n==1 && m==1)
    249         return ans=1LL*maped[1][1];
    250     dp[cnt].init();
    251     dp[cnt].add(0,0);
    252     for(int i=1;i<=n;i++)
    253     {
    254         for(int j=1;j<=m;j++)
    255         {
    256             dp[cnt^1].init();
    257             dpblank(i,j,cnt,n,m);
    258             cnt^=1;
    259 /*            for(int it=1;it<=dp[cnt].size;it++)
    260             {
    261                 decode(dp[cnt].state[it],code,m);
    262                 for(int k=0;k<=m;k++)
    263                     printf("%d:%d ",k,code[k]);
    264                 printf("fas:%lld
    ",dp[cnt].fas[it]);
    265             }
    266             printf("
    "); */
    267         }
    268     }
    269     for(int i=1;i<=dp[cnt].size;i++)
    270         ans+=dp[cnt].fas[i];
    271     return ans;
    272 }
    273 int main()
    274 {
    275     int n,m,kase=0;
    276     while(scanf("%d%d",&n,&m)!=EOF)
    277     {
    278         init(n,m);
    279         printf("Case %d: %lld
    ",++kase,solve(n,m));
    280     }
    281     return 0;
    282 }
    View Code

    可见增加一维可能导致时间暴增,所以能少递推次数尽量少。

     还有测过kuangbin的代码,178ms。状态数过多吧容易变慢。

    hdu 3633

    Black and white

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 254    Accepted Submission(s): 76
    Special Judge


    Problem Description
    Given a partially filled grid with N rows and M columns and each gird with a number.We define sumBlack is the sum of all Black gird and sumWhite is the sum of all White gird.
    You are to calculate how many ways there are to fill the remaining part of the grid under the constraints stated below to make the absolute of (sumBlack - sumWhite) minimum and output one of these ways (if any exist).
    Each cell in the grid should be colored either black or white.
    All black cells in the grid should be connected with each other, and all white cells should also be connected with each other.The pictures below show two filled grids where this constraint is only fulfilled in the picture2.

    There must be no 2x2 blocks in the grid which consists of only white cells, or of only black cells.
    The picture3 shows a grid with a black and a white 2x2 block, while the picture4 contains no such 2x2 block.

    You are not allowed to change the color of any of the cells whose color has already been assigned in the input, and all cells must be colored.
     
    Input
    The first line in the input contains an integer T (1<=T<=30), the number of cases to follow.
    Each case starts with two integers, N and M (2 ≤ N, M ≤ 8), the number of rows and columns respectively in the grid.
    The next N lines contains M characters each and describes the grid using the following characters:
      # - a cell which is colored black
      o - a cell which is colored white
      . - a cell which color has not yet been assigned
    The next N lines contains M integers (-1 or 0 or 1) each indicating the number of this gird.
     
    Output
    For each case, first line output the number of case(as shown in the sample output)
    If there are at least one way, then output the minimum absolute of (sumBlack - sumWhite) and the number of ways to fill the grid make it minimum in a line and output one of these ways, using the same format for the grid as in the input.(anyone is ok)
    If there is no way to fill the gird under the constraints stated , just output two zero.
    Output a blank line after each case.(Special judge.If you not output a blank line after each case, you may get Wrong Answer)
     
    Sample Input
    4 2 3 xxx oox 1 1 0 0 1 0 2 3 ... ... 1 1 0 0 1 -1 5 5 ..x.. ..... ....o o.... .x... 1 1 0 0 1 0 -1 -1 0 1 1 1 0 -1 0 1 0 1 -1 -1 -1 -1 1 -1 0 4 5 ..... ..... ..... ..... 1 1 0 0 1 0 -1 -1 0 1 1 1 0 -1 0 1 0 1 -1 -1
     
    Sample Output
    Case 1: 1 1 xxx oox Case 2: 0 8 xxx xox Case 3: 0 0 Case 4: 1 54 xxxxx xoxox oooox oxxxx
     

    转移状态较多,给出胡浩的题解:
    black &white 题解
     然后注意一点,他这个轮廓线不包括左右插头的轮廓线,也就是只包含上下插头的轮廓线,所以只有m个。
      1 #include<cstdio>
      2 #include<iostream>
      3 #include<cstring>
      4 #include<cmath>
      5 #define clr(x) memset(x,0,sizeof(x))
      6 #define clr_1(x) memset(x,-1,sizeof(x))
      7 #define LL long long
      8 #define HASH 100003
      9 #define STATE 100010
     10 #define INF 0x3f3f3f3f
     11 using namespace std;
     12 char s[10][10];
     13 int value[10][10];
     14 int pre[65][100010];
     15 char sta[65][100010];
     16 int code[10],ch[10];
     17 int n,m;
     18 struct hashmap//hash表存状态及大的数和
     19 {
     20     int size;
     21     int next[STATE],head[HASH];
     22     int state[STATE],dif[STATE],col[STATE];
     23     LL fas[STATE];
     24     void init()//清空
     25     {
     26         size=0;
     27         clr_1(head);
     28     }
     29     void add(int st,int difr,int colr,int prer,char chr,LL solu,int id)
     30     {
     31         int k=((st<<6)+colr+difr+2000)%HASH;
     32         for(int i=head[k];i!=-1;i=next[i])
     33         if(st==state[i] && difr==dif[i] && colr==col[i])
     34         {
     35             fas[i]+=solu;
     36             return ;
     37         }
     38         state[++size]=st;
     39         dif[size]=difr;
     40         col[size]=colr;
     41         fas[size]=solu;
     42         pre[id][size]=prer;
     43         sta[id][size]=chr;
     44         next[size]=head[k];
     45         head[k]=size;
     46         return ;
     47     }
     48 }dp[2];
     49 void init(int n,int m)
     50 {
     51     for(int i=0;i<n;i++)
     52         scanf("%s",s[i]);
     53     for(int i=0;i<n;i++)
     54         for(int j=0;j<m;j++)
     55             scanf("%d",&value[i][j]);
     56     return ; 
     57 }
     58 int encode(int *code,int m)
     59 {
     60     int st=0;
     61     clr_1(ch);
     62     int ct=-1;
     63     for(int i=0;i<m;i++)
     64     {
     65            st<<=3;
     66         if(ch[code[i]]==-1) ch[code[i]]= ++ ct;
     67         st=st|ch[code[i]];
     68     }
     69     return st;
     70 }
     71 void decode(int *code,int m,int st)
     72 {
     73     for(int i=m-1;i>=0;i--)
     74     {
     75         code[i]=st & 7;
     76         st>>=3;
     77     }
     78     return ;
     79 }
     80 void print(int k)
     81 {
     82     for(int i=n-1;i>=0;i--)
     83         for(int j=m-1;j>=0;j--)
     84         {
     85             s[i][j]=sta[i*m+j][k];
     86             k=pre[i*m+j][k];
     87         }
     88     for(int i=0;i<n;i++)
     89         printf("%s
    ",s[i]);
     90     return ;
     91 }
     92 void dpblank(int i,int j,int cnt,int c)
     93 {
     94     int lt,up,ltup,col,s1,s2;
     95     for(int it=1;it<=dp[cnt].size;it++)
     96     {
     97         decode(code,m,dp[cnt].state[it]);
     98         col=dp[cnt].col[it];
     99         up=(i>0)?(col>>j&1)==c:0;
    100         lt=(j>0)?(col>>(j-1) & 1)==c:0;
    101         ltup=(i&&j)?(col >> m)==c:0;
    102         if(i==n-1 && j==m-1 && !lt & !up & ltup) continue;
    103         if(lt && up && ltup) continue;
    104         if(i && !up)
    105         {
    106             s1=s2=0;
    107             for(int k=0;k<m;k++)
    108             {
    109                 if(code[k]==code[j])
    110                     s1++;
    111                 if((col>>k&1)!=c)
    112                     s2++;
    113             }
    114             if(s1==1)
    115             {
    116                 if(s2>1) continue;
    117                 if(i<n-1 || j<m-2) continue;
    118             }
    119         }
    120         if(lt && up)
    121         {
    122             if(code[j]!=code[j-1])
    123                 for(int k=0,x=code[j];k<m;k++)
    124                     if(code[k]==x)
    125                         code[k]=code[j-1];
    126         }
    127         else if(lt & !up)
    128             code[j]=code[j-1];
    129         else if(!lt && !up)
    130             code[j]=m;
    131         if(col & 1 << j) col |= 1 << m;
    132         else col &= ~(1 << m);
    133         if(c) col |= 1 << j;
    134         else col &= ~(1 << j);
    135         dp[cnt^1].add(encode(code,m),dp[cnt].dif[it]+ (c ? -value[i][j] : value[i][j]),col,it,(c==0?'o':'x'),dp[cnt].fas[it],i*m+j);
    136     }
    137     return ;
    138 }
    139 void solve(int n,int m)
    140 {
    141     int cnt=0;
    142     dp[cnt].init();
    143     dp[cnt].add(0,0,0,0,0,1,0);
    144     for(int i=0;i<n;i++)
    145         for(int j=0;j<m;j++)
    146         {
    147             dp[cnt^1].init();
    148             if(s[i][j]!='x') dpblank(i,j,cnt,0);
    149             if(s[i][j]!='o') dpblank(i,j,cnt,1);
    150             cnt^=1; 
    151         };
    152     int minx=INF,ctk;
    153     LL ans=0;
    154     int ct;
    155     for(int it=1;it<=dp[cnt].size; it++)
    156     {
    157         int s1 = 0;
    158         clr(ch);
    159         decode(code,m,dp[cnt].state[it]);
    160         for(int j = 0; j < m; j ++) if(!ch[code[j]]) ++s1, ch[code[j]] = 1;
    161         if(s1 <= 2)
    162         {
    163             if(abs(dp[cnt].dif[it]) < minx)
    164                 minx=abs(dp[cnt].dif[it]),ans = dp[cnt].fas[it],ctk=it;
    165             else if(abs(dp[cnt].dif[it])==minx)
    166                 ans+=dp[cnt].fas[it];    
    167         }
    168     }
    169     if(minx==INF) printf("0 0
    ");
    170     else
    171     {
    172         printf("%d %lld
    ", minx,ans);
    173         print(ctk);
    174     }
    175     return ;
    176 }
    177 int main()
    178 {
    179     int T;
    180     scanf("%d",&T);
    181     for(int kase=1;kase<=T;kase++)
    182     {
    183         scanf("%d%d",&n,&m);
    184         init(n,m);
    185         printf("Case %d: ",kase);
    186         solve(n,m);
    187         printf("
    ");
    188     }
    189     return 0;
    190 }
    插头dp
  • 相关阅读:
    对象的方法
    uni-app运行
    flex取值
    阿里矢量库使用
    移动端vue项目模板
    微信分享--转载
    页面流动条
    uni-app打包
    Hibernate~DAO
    EL表达式
  • 原文地址:https://www.cnblogs.com/wujiechao/p/6896480.html
Copyright © 2011-2022 走看看