zoukankan      html  css  js  c++  java
  • HDU 6627 equation (分类讨论)

    2019 杭电多校 5 1004

    题目链接:HDU 6627

    比赛链接:2019 Multi-University Training Contest 5

    Problem Description

    You are given two integers (N,C) and two integer sequences (a) and (b) of length (N). The sequences are indexed from (1) to (N).

    Please solve the following equation for (x):

    (∑_{i=1}^N|a_icdot x + b_i| = C), where (|v|) means the absolute value of (v).

    Input

    The first line contains an integer (T) indicating there are (T) tests. Each test consists of (N+1) lines. The first line contains two integers (N,C). The (i)-th line of following (N) lines consists of two integers (a_i,b_i).

    (* 1le Tle 50)

    (* 1le Nle 10^5)

    (* 1le a_ile 1000)

    (* −1000le b_ile 1000)

    (* 1le Cle 10^9)

    (*) only (5) tests with (N) larger than (1000)

    Output

    For each test, output one line.

    If there are an infinite number of solutions, this line consists only one integer (−1).

    Otherwise, this line first comes with an integer (m) indicating the number of solutions, then you must print (m) fractions from the smallest to the largest indicating all possible answers. (It can be proved that all solutions can be written as fractions). The fraction should be in the form of "a/b" where a must be an integer, b must be a positive integer, and (gcd(abs(a),b)=1). If the answer is (0), you should output "(0/1)".

    Sample Input

    4
    2 3
    1 2
    1 -1
    3 3
    2 1
    2 2
    2 3
    2 1
    3 5
    4 -1
    3 2
    1 -1
    1 -2
    1 -3
    

    Sample Output

    -1
    2 -3/2 -1/2
    0
    1 2/1
    

    Solution

    题意:

    给定一个整数 (C)(N)(a_i,b_i),求 (∑_{i=1}^N|a_icdot x + b_i| = C) 的所有解,如果有无穷多个解就输出 -1.

    思路

    分类讨论

    分类讨论去绝对值。根据 (b_i / a_i) 排序,可得各段区间:([-b_0/a_0, ∞), [-b_1/a_1, -b_0/a_0), [-b_2/a_2, -b_1/a_1), ... ,[-b_n/a_n, -b_{n-1}/a_{n-1}), [∞, -b_n/a_n))(suma = sum_{i=1}^Na_i, sumb = sum_{i=1}^Nb_i),依次让 (a_ix+b_i) 变成 (-a_ix-b_i),也就是 (suma - 2a_i, sumb-2b_i),求出 (x_i = frac{c - sumb}{suma}) 并判断是否在区间内。无穷解的情况:(suma = 0, sumb = c)

    感谢杭电没有卡 (double)

    #include <cstdio>
    #include <iostream>
    #include <cmath>
    #include <vector>
    #include <algorithm>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    
    typedef long long ll;
    
    struct Coefficient {
        ll a, b;
    } co[maxn];
    
    int cmp(Coefficient c1, Coefficient c2) {
        return c1.b * 1.0 / c1.a < c2.b * 1.0 / c2.a;
    }
    
    vector<Coefficient> ans;
    
    ll gcd(ll a, ll b) {
        return b == 0? a: gcd(b, a % b);
    }
    
    int main() {
        int T;
        cin >> T;
        while(T--) {
            ans.clear();
            int n;
            ll c;
            scanf("%d%lld", &n, &c);
            ll suma = 0, sumb = 0;
            for(int i = 1; i <= n; ++i) {
                scanf("%lld%lld", &co[i].a, &co[i].b);
                suma += co[i].a;
                sumb += co[i].b;
            }
            sort(co + 1, co + n + 1, cmp);
            Coefficient t;
            t.a = suma, t.b = sumb;
            if((c - sumb) * 1.0 / suma >= -co[1].b * 1.0 / co[1].a) {
                t.b = c - t.b;
                ans.push_back(t);
            }
    
            int flag = 1;
            for(int i = 1; i <= n; ++i) {
                suma -= co[i].a * 2;
                sumb -= co[i].b * 2;
                t.a = suma;
                t.b = sumb;
                if(!suma) {
                    if(sumb == c) {
                        flag = 0;
                        break;
                    }
                }
                if(i < n) {
                    if((c - sumb) * 1.0 / suma >= -co[i + 1].b * 1.0 / co[i + 1].a && (c - sumb) * 1.0 / suma < -co[i].b * 1.0 / co[i].a) {
                        t.b = c - t.b;
                        ans.push_back(t);
                    }
                } else {
                    if((c - sumb) * 1.0 / suma < -co[i].b * 1.0 / co[i].a) {
                        t.b = c - t.b;
                        ans.push_back(t);
                    }
                }
            }
    
            if(!flag) printf("-1
    ");
            else {
                sort(ans.begin(), ans.end(), cmp);
                printf("%d", ans.size());
                for(int i = 0; i < ans.size(); ++i) {
                    if(ans[i].b * 1.0 / ans[i].a < 0) printf(" -");
                    else printf(" ");
                    ll g = gcd(abs(ans[i].b), abs(ans[i].a));
                    if(ans[i].b == 0) printf("0/1");
                    else printf("%lld/%lld", abs(ans[i].b) / g, abs(ans[i].a) / g);
                }
                printf("
    ");
            }
            
        }
        return 0;
    }
    
  • 相关阅读:
    41.给你一个未排序的整数数组,请你找出其中没有出现的最小的正整数。
    Java反射学习记录
    LeetCode算法笔记-回溯法
    LeetCode算法笔记(二)
    LeetCode算法笔记(一)
    JDBC学习笔记--通用的查询方法
    JDBC学习笔记--ResultSetMetaData
    JDBC学习笔记--PreparedStatement
    Java学习笔记---字符串
    Java学习笔记---通过异常处理错误
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11356964.html
Copyright © 2011-2022 走看看