题目链接:Twice Equation
Description
For given (L), find the smallest (n) no smaller than (L) for which there exists an positive integer (m) for which (2m(m + 1) = n(n + 1)).
Input
This problem contains multiple test cases. The first line of a multiple input is an integer (T (1 le T < 1000)) followed by (T) input lines. Each line contains an integer (L (1 le L < 10^{190})).
Output
For each given (L), output the smallest (n). If available nn does not exist, output (−1).
Sample Input
3
1
4
21
Sample Output
3
20
119
Solution
题意
给出一个整数 (L),求大于等于 (L) 的最小整数 (n) 满足存在一个整数 (m) 使得 (2m(m + 1) = n(n + 1))。
题解
打表找规律
[f(n) = f(n - 1) * 6 - f(n - 2) + 2
]
然后用 Java 大数求解即可。
Code
import java.util.Scanner;
import java.math.BigInteger;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
BigInteger[] a = new BigInteger[1000];
// 打表
a[0] = BigInteger.ZERO;
a[1] = BigInteger.valueOf(3);
BigInteger six = new BigInteger("6");
BigInteger two = new BigInteger("2");
for(int i = 2; i < 300; ++i) {
a[i] = ((a[i - 1].multiply(six)).subtract(a[i - 2])).add(two);
}
int t = in.nextInt();
while (t-->0){
boolean flag = false;
BigInteger l = in.nextBigInteger();
for(int i = 0; i < 1000; ++i) {
if(a[i].compareTo(l) >= 0) {
System.out.println(a[i]);
flag = true;
break;
}
}
if(!flag) System.out.println(-1);
}
}
}