zoukankan      html  css  js  c++  java
  • HDU 6659 Acesrc and Good Numbers (数学 思维)

    2019 杭电多校 8 1003

    题目链接:HDU 6659

    比赛链接:2019 Multi-University Training Contest 8

    Problem Description

    Acesrc is a famous mathematician at Nanjing University second to none. Playing with interesting numbers is his favorite. Today, he finds a manuscript when cleaning his room, which reads

    ... Let (f(d,n)) denote the number of occurrences of digit (d) in decimal representations of integers (1,2,3,⋯,n). The function has some fantastic properties ...

    ... Obviously, there exist some nonnegative integers (k), such that (f(d,k)=k), and I decide to call them (d)-good numbers ...

    ... I have found all d-good numbers not exceeding (10^{1000}), but the paper is too small to write all these numbers ...

    Acesrc quickly recollects all (d)-good numbers he found, and he tells Redsun a question about (d)-good numbers: what is the maximum (d)-good number no greater than (x)? However, Redsun is not good at mathematics, so he wants you to help him solve this problem.

    Input

    The first line of input consists of a single integer (q (1le qle 1500)), denoting the number of test cases. Each test case is a single line of two integers (d (1le dle 9)) and (x (0le xle 10^{18})).

    Output

    For each test case, print the answer as a single integer in one line. Note that (0) is trivially a (d)-good number for arbitrary (d).

    Sample Input

    3
    1 1
    1 199999
    3 0
    

    Sample Output

    1
    199990
    0
    

    Solution

    题意

    定义 (f(d, n)) 为十进制下 (1)(n) 所有数的数位中数字 (d) 出现的次数。给定 (x),找出最大的 (n(n le x)) 满足 (f(d, n) = n)

    题解

    看到了一个神仙做法。

    显然如果 (f(d, x) = x) 时就直接输出。

    否则,需要缩小 (x)。令 (f(d, x) = y),则需要将 (x) 缩小 (lceil frac{|x - y|}{18} ceil)。即 (x = x - abs(f(d, x) - x) / 18)。原因是 (f(d, x))(f(d, x - 1)) 最多相差 (18)(d) ( (e.g. f(9, 10^{18}-1) to f(9, 10^{18}-2)))

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    // 计算 1 到 n 中数字 x 出现的次数
    ll f(ll d, ll n) {
        ll cnt = 0, k;
        for (ll i = 1; k = n / i; i *= 10) {
            cnt += (k / 10) * i;
            int cur = k % 10;
            if (cur > d) {
                cnt += i;
            }
            else if (cur == d) {
                cnt += n - k * i + 1;
            }
        }
        return cnt;
    }
    
    int main() {
        ios::sync_with_stdio(0);
        cin.tie(0);
        cout.tie(0);
        int T;
        cin >> T;
        while (T--) {
            ll d, x;
            cin >> d >> x;
            while (true) {
                ll num = f(d, x);
                if (num == x) {
                    cout << x << endl;
                    break;
                } else {
                    x -= max(1LL, abs(num - x) / 18);
                }
            }
        }
        return 0;
    }
    

    Reference

    2019 Multi-University Training Contest 8——Acesrc and Good Numbers(数学 想法)

  • 相关阅读:
    MySQL Limit优化(转)
    MySQL数据库性能优化思路与解决方法(一转)
    Mysql占用CPU过高如何优化?(转)
    数据库方面两个简单实用的优化方法(转)
    硬盘扩容9999T
    python内涵段子爬取练习
    jmeter环境配置
    PyCharm3.0默认快捷键
    python3 操作页面上各种元素的方法
    python3 selenium webdriver 元素定位xpath定位骚操作
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11379931.html
Copyright © 2011-2022 走看看