zoukankan      html  css  js  c++  java
  • Codeforces 340B

    Codeforces Round #198 (Div. 2)

    题目链接:Maximal Area Quadrilateral

    Iahub has drawn a set of (n) points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.

    Input

    The first line contains integer (n (4 le n le 300)). Each of the next (n) lines contains two integers: (x_i, y_i ( - 1000 le xi, yi le 1000)) — the cartesian coordinates of ith special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide.

    Output

    Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed (10 ^{- 9}).

    Examples

    input

    5
    0 0
    0 4
    4 0
    4 4
    2 3
    

    output

    16.000000
    

    Note

    In the test example we can choose first (4) points to be the vertices of the quadrilateral. They form a square by side (4), so the area is (4cdot 4 = 16).

    Solution

    题意

    给定 (n) 个点的坐标,选择其中 (4) 个点构成四边形,求最大四边形面积。

    题解

    四边形的面积等于两个三角形面积的和。枚举四边形的对角线,以及左右两边的点,选择两个面积最大的三角形,更新 (ans)

    三重循环枚举,时间复杂度 (O(n^3))

    Code

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef double db;
    const db eps = 1e-10;  
    const db pi = acos(-1.0);
    const int inf = 0x3f3f3f3f;
    const int maxn = 300 + 5;
    
    inline int dcmp(db x) {
        if(fabs(x) < eps) return 0;
        return x > 0? 1: -1;
    }
    
    class Point {
    public:
        double x, y;
        Point(double x = 0, double y = 0) : x(x), y(y) {}
        void input() {
            scanf("%lf%lf", &x, &y);
        }
        bool operator<(const Point &a) const {
            return (!dcmp(x - a.x))? dcmp(y - a.y) < 0: x < a.x;
        }
        bool operator==(const Point &a) const {
            return dcmp(x - a.x) == 0 && dcmp(y - a.y) == 0;
        }
        db dis2(const Point a) {
            return pow(x - a.x, 2) + pow(y - a.y, 2);
        }
        db dis(const Point a) {
            return sqrt(dis2(a));
        }
    
        db dis2() {
            return x * x + y * y;
        }
        db dis() {
            return sqrt(dis2());
        }
        Point operator+(const Point a) {
            return Point(x + a.x, y + a.y);
        }
        Point operator-(const Point a) {
            return Point(x - a.x, y - a.y);
        }
        Point operator*(double p) {
            return Point(x * p, y * p);
        }
        Point operator/(double p) {
            return Point(x / p, y / p);
        }
        db dot(const Point a) {
            return x * a.x + y * a.y;
        }
        db cross(const Point a) {
            return x * a.y - y * a.x;
        }
    };
    typedef Point Vector;
    
    vector<Point> p;
    
    map<pair<int, int>, int> mp;
    
    int main() {
        double ans = 0;
        int n;
        scanf("%d", &n);
        for(int i = 0; i < n; ++i) {
            Point tmp;
            tmp.input();
            p.push_back(tmp);
        }
        sort(p.begin(), p.end());
        for(int i = 0; i < p.size(); ++i) {
            for(int j = i + 1; j < p.size(); ++j) {
                if(!mp[{i, j}]) {
                    mp[{i, j}] = 1;
                    double s1 = 0, s2 = 0;
                    for(int k = 0; k < p.size(); ++k) {
                        if(k == i || k == j) continue;
                        if(dcmp((p[j] - p[i]).cross(p[k] - p[i])) > 0) {
                            s1 = max(s1, fabs((p[j] - p[i]).cross(p[k] - p[i])) * 0.5);
                        } else {
                            s2 = max(s2, fabs((p[j] - p[i]).cross(p[k] - p[i])) * 0.5);
                        }
                    }
                    if(dcmp(s1) == 0 || dcmp(s2) == 0) continue;
                    ans = max(ans, s1 + s2);
                }
            }
        }
        printf("%.10lf
    ", ans);
        return 0;
    }
    
  • 相关阅读:
    Python网络爬虫与信息提取(二)—— BeautifulSoup
    Linux文件系统概述
    XML简介
    JSON数据格式
    SQL*Loader之CASE8
    SQL*Loader之CASE9
    SQL*Loader之CASE10
    SQL*Loader之CASE11
    Oracle工具之DBNEWID
    Oracle常用函数汇总
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11443276.html
Copyright © 2011-2022 走看看