zoukankan      html  css  js  c++  java
  • POJ 3268 Silver Cow Party (Dijkstra)

    题目链接:POJ 3268

    Description

    One cow from each of (N) farms ((1 ≤ N ≤ 1000)) conveniently numbered (1..N) is going to attend the big cow party to be held at farm #(X (1 ≤ X ≤ N)). A total of (M (1 ≤ M ≤ 100,000)) unidirectional (one-way roads connects pairs of farms; road (i) requires (T_i (1 ≤ T_i ≤ 100)) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line (1): Three space-separated integers, respectively: (N), (M), and (X)

    Lines (2.. M+1): Line (i+1) describes road (i) with three space-separated integers: (A_i), (B_i), and (T_i). The described road runs from farm (A_i) to farm (B_i), requiring (T_i) time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3
    

    Sample Output

    10
    

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

    Source

    USACO 2007 February Silver

    Solution

    题意

    给定 (n) 个点和 (m) 条边的有向图,每个点有一头牛,牛 (a) 到牛 (b) 需花费的时间为 (t),现在所有的牛要到牛 (x) 所在的点去,求所有牛去牛 (x) 处再返回的最短时间中的最大值。

    思路

    Dijkstra

    对原图和反向建边的图各跑一次 (Dijkstra),两次的 (d) 数组的和就是每头牛的往返的最短时间,然后找出其中的最大值即可。

    Code

    #include <iostream>
    #include <cstdio>
    #include <queue>
    #include <map>
    #include <cmath>
    #include <algorithm>
    #include <cstring>
    #include <functional>
    using namespace std;
    const int N = 1010, M = 1e5 + 10;
    const int inf = 0x3f3f3f3f;
    typedef pair<int, int> P;
    int n, m, x;
    int s[M], e[M], w[M];
    
    struct Edge {
        int to, w;
        Edge(int to, int w): to(to), w(w) {}
    };
    vector<Edge> G[N];
    int d[N], vis[N];
    int cnt[N];
    
    void init() {
        for(int i = 0; i < N; ++i) {
            G[i].clear();
        }
    }
    
    void add(int x, int y, int z) {
        G[x].push_back(Edge(y, z));
    }
    
    void dijkstra(int s) {
        priority_queue<P,vector<P>,greater<P> > q;
        memset(d, 0x3f, sizeof(d));
        memset(vis, 0, sizeof(vis));
        d[s] = 0;
        q.push(P(0, s));
        while(q.size()) {
            P p = q.top(); q.pop();
            int x = p.second;
            if(vis[x]) continue;
            vis[x] = 1;
            for(int i = 0; i < G[x].size(); ++i) {
                Edge e = G[x][i];
                if (d[e.to] > d[x] + e.w) {
                    d[e.to] = d[x] + e.w;
                    q.push(P(d[e.to], e.to));
                }
            }
        }
    }
    
    int main() {
        init();
        scanf("%d%d%d", &n, &m, &x);
        for(int i = 1; i <= m; ++i) {
            scanf("%d%d%d", &s[i], &e[i], &w[i]);
            add(s[i], e[i], w[i]);
        }
        dijkstra(x);
        for(int i = 1; i <= n; ++i) {
            cnt[i] = d[i];
        }
        init();
        for(int i = 1; i <= m; ++i) {
            add(e[i], s[i], w[i]);
        }
        dijkstra(x);
        int ans = 0;
        for(int i = 1; i <= n; ++i) {
            ans = max(ans, cnt[i] + d[i]);
        }
        printf("%d
    ", ans);
        return 0;
    }
    
  • 相关阅读:
    IO学习BufferedWriter 规格严格
    Finalization 规格严格
    linux下查看主板内存槽与内存信息 规格严格
    调试JavaScript/VB Script脚本程序(Wscript篇) 规格严格
    ORA01688:unable to extend table name。name partition NAME by NUM in tablespace NAME 规格严格
    Hidden Java 7 Features – SecondaryLoop 规格严格
    Web应用服务器监控 规格严格
    NetBeans 时事通讯(刊号 # 12 Jun 16, 2008)
    NetBeans 时事通讯(刊号 # 12 Jun 16, 2008)
    Win32 DLL的一个调试心得
  • 原文地址:https://www.cnblogs.com/wulitaotao/p/11668084.html
Copyright © 2011-2022 走看看