题目链接:HDU 1711
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
Source
Solution
题意
给定两个大小分别为 (n) 和 (m) 的数组,求第二个数组在第一个数组中出现的位置。
思路
KMP 模板题。把字符串改成数组就行了。
Code
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 10, maxm = 1e4 + 10;
int a[maxn], b[maxm], pi[maxm];
// 前缀函数
void prefix_function(int n) {
for(int i = 1; i < n; ++i) {
int j = pi[i - 1];
while(j > 0 && b[i] != b[j]) j = pi[j - 1];
if(b[i] == b[j]) ++j;
pi[i] = j;
}
}
int kmp(int n, int m) {
prefix_function(m);
int i = 0, j = 0;
while(i < n && j < m) {
if(a[i] == b[j]) {
++i;
++j;
} else {
if(j == 0) ++i;
else j = pi[j - 1];
}
}
if(j == m) {
return i - j + 1;
}
return -1;
}
int main() {
int T;
scanf("%d", &T);
while(T--) {
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i) {
scanf("%d", &a[i]);
}
for(int i = 0; i < m; ++i) {
scanf("%d", &b[i]);
}
int ans = kmp(n, m);
printf("%d
", ans);
}
return 0;
}