zoukankan      html  css  js  c++  java
  • 【tf.keras】tf.keras模型复现

    keras 构建模型很简单,上手很方便,同时又是 tensorflow 的高级 API,所以学学也挺好。

    模型复现在我们的实验中也挺重要的,跑出了一个模型,虽然我们可以将模型的 checkpoint 保存,但再跑一遍,怎么都得不到相同的结果。

    用 keras 实现模型,想要能够复现,首先需要设置各个可能的随机过程的 seed,如 np.random.seed(1),然后代码不要在 GPU 上跑,而是限制在 CPU 上跑

    (当使用 conv2D 层时,似乎在 GPU 上跑没法复现,即使设置 batch_size=1,只在 CPU 上跑才能复现。)

    我的 tensorflow+keras 版本:

    print(tf.VERSION)    # '1.10.0'
    print(tf.keras.__version__)    # '2.1.6-tf'
    

    keras 模型可复现的配置:

    import numpy as np
    import tensorflow as tf
    import random as rn
    
    import os
    # run on CPU only, if you want to run code on GPU, you should delete the following line.
    os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    os.environ["PYTHONHASHSEED"] = '0'
    
    # The below is necessary for starting Numpy generated random numbers
    # in a well-defined initial state.
    
    np.random.seed(42)
    
    # The below is necessary for starting core Python generated random numbers
    # in a well-defined state.
    
    rn.seed(12345)
    
    # Force TensorFlow to use single thread.
    # Multiple threads are a potential source of non-reproducible results.
    # For further details, see: https://stackoverflow.com/questions/42022950/
    
    session_conf = tf.ConfigProto(intra_op_parallelism_threads=1,
                                  inter_op_parallelism_threads=1)
    
    from keras import backend as K
    
    # The below tf.set_random_seed() will make random number generation
    # in the TensorFlow backend have a well-defined initial state.
    # For further details, see:
    # https://www.tensorflow.org/api_docs/python/tf/set_random_seed
    
    tf.set_random_seed(1234)
    
    sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
    K.set_session(sess)
    
    # Rest of code follows ...
    

    对于 tensorflow low-level API,即用 tf.variable_scope() 和 tf.get_variable() 自行构建 layers,同样会出现这种问题。

    keras 文档 对此的解释是:

    Moreover, when using the TensorFlow backend and running on a GPU, some operations have non-deterministic outputs, in particular tf.reduce_sum(). This is due to the fact that GPUs run many operations in parallel, so the order of execution is not always guaranteed. Due to the limited precision of floats, even adding several numbers together may give slightly different results depending on the order in which you add them. You can try to avoid the non-deterministic operations, but some may be created automatically by TensorFlow to compute the gradients, so it is much simpler to just run the code on the CPU.

    而 pytorch 是怎么保证可复现:(cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率。可以看到,下面的代码强制 cudnn 产生确定性的结果,但会牺牲效率。具体参见博客 PyTorch的可重复性问题 (如何使实验结果可复现)

    from torch.backends import cudnn
    cudnn.benchmark = False            # if benchmark=True, deterministic will be False
    cudnn.deterministic = True
    

    References

    How can I obtain reproducible results using Keras during development? -- Keras Documentation 具有Tensorflow后端的Keras可以随意使用CPU或GPU吗? PyTorch的可重复性问题 (如何使实验结果可复现)-- hyk_1996

  • 相关阅读:
    appcan双击返回退出系统
    实现两个矩阵相乘的C语言程序
    编写简单的windows桌面计算器程序
    使用C++实现图形的旋转、缩放、平移
    使用MFC创建C++程序
    SQL server2017的操作(练习题)
    使用SQL语句在SQL server2017上创建数据库
    使用交互式方式在SQL server2017上创建数据库
    解决VS2017编译后的EXE文件不能在其他电脑上运行的问题
    傅里叶分析之掐死教程(完整版)更新于2014.06.06----转载
  • 原文地址:https://www.cnblogs.com/wuliytTaotao/p/10883749.html
Copyright © 2011-2022 走看看