zoukankan      html  css  js  c++  java
  • [MySQL优化案例]系列 — RAND()优化

    众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。

    首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:

    [yejr@imysql]> show create table t_innodb_randomG
    *************************** 1. row ***************************
    Table: t_innodb_random
    Create Table: CREATE TABLE `t_innodb_random` (
    `id` int(10) unsigned NOT NULL,
    `user` varchar(64) NOT NULL DEFAULT '',
    KEY `idx_id` (`id`)
    ) ENGINE=InnoDB DEFAULT CHARSET=latin1
    

    往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。

    [yejr@imysql]> select count(*) from t_innodb_randomG
    *************************** 1. row ***************************
    count(*): 393216
    

    1、常量等值检索:

    [yejr@imysql]> explain select id from t_innodb_random where id = 13412G
    *************************** 1. row ***************************
    id: 1
    select_type: SIMPLE
    table: t_innodb_random
    type: ref
    possible_keys: idx_id
    key: idx_id
    key_len: 4
    ref: const
    rows: 1
    Extra: Using index
    
    [yejr@imysql]> select id from t_innodb_random where id = 13412;
    1 row in set (0.00 sec)
    

    可以看到执行计划很不错,是常量等值查询,速度非常快。

    2、使用RAND()函数乘以常量,求得随机数后检索:

    [yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*13241324)G
    *************************** 1. row ***************************
    id: 1
    select_type: SIMPLE
    table: t_innodb_random
    type: index
    possible_keys: NULL
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 393345
    Extra: Using where; Using index
    
    [yejr@imysql]> select id from t_innodb_random where id = round(rand()*13241324)G
    Empty set (0.26 sec)
    

    可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。

    我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:

    [yejr@imysql]> explain select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))G
    *************************** 1. row ***************************
    id: 1
    select_type: PRIMARY
    table: t_innodb_random
    type: index
    possible_keys: NULL
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 393345
    Extra: Using where; Using index
    *************************** 2. row ***************************
    id: 2
    select_type: SUBQUERY
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: Select tables optimized away
    
    [yejr@imysql]> select id from t_innodb_random where id = round(rand()*(select max(id) from t_innodb_random))G
    Empty set (0.27 sec)
    

    可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。

    3、改造成普通子查询模式 ,这里有两次子查询

    [yejr@imysql]> explain select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)G
    *************************** 1. row ***************************
    id: 1
    select_type: PRIMARY
    table: t_innodb_random
    type: index
    possible_keys: NULL
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 393345
    Extra: Using where; Using index
    *************************** 2. row ***************************
    id: 3
    select_type: SUBQUERY
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: Select tables optimized away
    
    [yejr@imysql]> select id from t_innodb_random where id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)G
    Empty set (0.27 sec)
    

    可以看到,执行计划也不好,执行耗时较慢。

    4、改造成JOIN关联查询,不过最大值还是用常量表示

    [yejr@imysql]> explain select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2G
    *************************** 1. row ***************************
    id: 1
    select_type: PRIMARY
    table: <derived2>
    type: system
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: 1
    Extra:
    *************************** 2. row ***************************
    id: 1
    select_type: PRIMARY
    table: t1
    type: ref
    possible_keys: idx_id
    key: idx_id
    key_len: 4
    ref: const
    rows: 1
    Extra: Using where; Using index
    *************************** 3. row ***************************
    id: 2
    select_type: DERIVED
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: No tables used
    
    [yejr@imysql]> select id from t_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 where t1.id = t2.id2G
    Empty set (0.00 sec)
    

    这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。
    这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:

    [yejr@imysql]> explain select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1G
    *************************** 1. row ***************************
    id: 1
    select_type: PRIMARY
    table: t_innodb_random
    type: index
    possible_keys: NULL
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 393345
    Extra: Using where; Using index
    *************************** 2. row ***************************
    id: 3
    select_type: SUBQUERY
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: Select tables optimized away
    
    [yejr@imysql]> select id from t_innodb_random where id > (select round(rand()*(select max(id) from t_innodb_random)) as nid) limit 1G
    *************************** 1. row ***************************
    id: 1301
    1 row in set (0.00 sec)
    

    可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。

    小结:
    从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。

    5、再来看看用ORDRR BY RAND()方式一次取得多个随机值的方式:

    [yejr@imysql]> explain select id from t_innodb_random order by rand() limit 1000G
    *************************** 1. row ***************************
    id: 1
    select_type: SIMPLE
    table: t_innodb_random
    type: index
    possible_keys: NULL
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 393345
    Extra: Using index; Using temporary; Using filesort
    
    [yejr@imysql]> select id from t_innodb_random order by rand() limit 1000;
    1000 rows in set (0.41 sec)
    

    全索引扫描,生成排序临时表,太差太慢了。

    6、把随机数放在子查询里看看:

    [yejr@imysql]> explain select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000G
    *************************** 1. row ***************************
    id: 1
    select_type: PRIMARY
    table: t_innodb_random
    type: index
    possible_keys: NULL
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 393345
    Extra: Using where; Using index
    *************************** 2. row ***************************
    id: 3
    select_type: SUBQUERY
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: Select tables optimized away
    
    [yejr@imysql]> select id from t_innodb_random where id > (select rand() * (select max(id) from t_innodb_random) as nid) limit 1000G
    1000 rows in set (0.04 sec)
    

    嗯,提速了不少,这个看起来还不赖:)

    7、仿照上面的方法,改成JOIN和随机数子查询关联

    [yejr@imysql]> explain select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000G
    *************************** 1. row ***************************
    id: 1
    select_type: PRIMARY
    table: <derived2>
    type: system
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: 1
    Extra:
    *************************** 2. row ***************************
    id: 1
    select_type: PRIMARY
    table: t1
    type: range
    possible_keys: idx_id
    key: idx_id
    key_len: 4
    ref: NULL
    rows: 196672
    Extra: Using where; Using index
    *************************** 3. row ***************************
    id: 2
    select_type: DERIVED
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: No tables used
    *************************** 4. row ***************************
    id: 3
    select_type: SUBQUERY
    table: NULL
    type: NULL
    possible_keys: NULL
    key: NULL
    key_len: NULL
    ref: NULL
    rows: NULL
    Extra: Select tables optimized away
    
    [yejr@imysql]> select id from t_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 on t1.id > t2.nid limit 1000G
    1000 rows in set (0.00 sec)
    

    可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。

    综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。
    上面说了那么多的废话,最后简单说下,就是把下面这个SQL:

    SELECT id FROM table ORDER BY RAND() LIMIT n;
    

    改造成下面这个:

    SELECT id FROM table t1 JOIN (SELECT RAND() * (SELECT MAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;
    

    如果想要达到完全随机,还可以改成下面这种写法:

    SELECT id FROM table t1 JOIN (SELECT round(RAND() * (SELECT MAX(id) FROM table)) AS nid FROM table LIMIT n) t2 ON t1.id = t2.nid;
    

    就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。

    From: http://imysql.com/2014/07/04/mysql-optimization-case-rand-optimize.shtml

  • 相关阅读:
    window10 禁止更新
    安装node.msi 格式的文件失败
    url参数的转码和解码
    Linux12-内存管理
    C++四种cast
    Linux内核5-系统调用
    Linux内核3-进程管理
    UNIX12-线程(下)线程控制
    UNIX11-线程(上)
    Linux内核8-中断下半部和推后执行的工作(下半部)
  • 原文地址:https://www.cnblogs.com/wumingcong/p/4688361.html
Copyright © 2011-2022 走看看