zoukankan      html  css  js  c++  java
  • PKU 1050-To The Max(找矩形内元素最大和)

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 
    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 
    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 
     

    Input

    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127]. 
     

    Output

    Output the sum of the maximal sub-rectangle. 
     

    Sample Input

    4 0 -2 -7 0 9 2 -6 2
    -4 1 -4 1 -1
    8 0 -2
     

    Sample Output

    15
     
    题意:给一个N*N的矩形数组,求其中元素和最大的子矩形,输出最大值。
    解析:因为数据比较小,可以枚举每个矩形,但是求矩形和时可以预处理一下。可以设置一个数组比如RecSum[i][j],i,j分别代表行,RecSum[i][j]表示右下角坐标为(i,j)左上角为(1,1)的矩形元素和,那么求某个矩形时,如左上角坐标为(upx,upy),右下角坐标为(lowx,lowy),则体积 V=RecSum[lowx][lowy]-RecSum[upx][lowy]-(RecSum[lowx][upy]-RecSum[upx][upy]);最后找最大值即可。
     
     代码如下:
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<set>
    #include<map>
    #include<queue>
    #include<vector>
    #include<iterator>
    #include<utility>
    #include<sstream>
    #include<iostream>
    #include<cmath>
    #include<stack>
    using namespace std;
    const int INF=1000000007;
    const double eps=0.00000001;
    int N,elem[101][101];
    int RowSum[101][101],RecSum[101][101];
    inline void Get_RowSum()    //处理每一行的前m个数的元素和
    {
        memset(RowSum,0,sizeof(RowSum));
        for(int x=1;x<=N;x++)
            for(int y=1;y<=N;y++)
        {
            if(y==1)  RowSum[x][y]=elem[x][y];
            else  RowSum[x][y]=RowSum[x][y-1]+elem[x][y];
        }
    }
    inline void Get_RecSum()     //得到RecSum[][]
    {
        memset(RecSum,0,sizeof(RecSum));
        for(int x=1;x<=N;x++)
            for(int y=1;y<=N;y++)
        {
            if(x==1)  RecSum[x][y]=RowSum[x][y];
            else  RecSum[x][y]=RecSum[x-1][y]+RowSum[x][y];
        }
    }
    inline int Get(int upx,int upy,int lowx,int lowy)
    {
        return RecSum[lowx][lowy]-RecSum[upx][lowy]-(RecSum[lowx][upy]-RecSum[upx][upy]);
    }
    int Cal(int row,int col)
    {
        int ret=-INF;
        for(int i=0;i+row<=N;i++)   //枚举每个矩形
        {
            for(int j=0;j+col<=N;j++)
            {
                int upx=i,upy=j,lowx=i+row,lowy=j+col;
                ret=max(ret,Get(upx,upy,lowx,lowy));
            }
        }
        return ret;
    }
    int main()
    {
        while(cin>>N)
        {
            for(int i=1;i<=N;i++)
                for(int j=1;j<=N;j++) scanf("%d",&elem[i][j]);
            Get_RowSum();
            Get_RecSum();
            int ans=-INF;
            for(int row=1;row<=N;row++)  // 枚举矩形大小
                for(int col=1;col<=N;col++)
                   ans=max(ans,Cal(row,col));
            cout<<ans<<endl;
        }
        return 0;
    }
    
     
     
     
  • 相关阅读:
    Java工具类
    集合 -- 嵌套表
    集合--索引表
    第一章
    记录Record
    序列Sequence
    操纵数据库 DML
    表的集合操作
    视图
    索引
  • 原文地址:https://www.cnblogs.com/wust-ouyangli/p/4744075.html
Copyright © 2011-2022 走看看