zoukankan      html  css  js  c++  java
  • hdu1134 Game of Connections(Catalan+高精)

    Problem Description

    This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, … , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another. And, no two segments are allowed to intersect.

    It’s still a simple game, isn’t it? But after you’ve written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?

    Input

    Each line of the input file will be a single positive number n, except the last line, which is a number -1. You may assume that 1 <= n <= 100.

    Output

    For each n, print in a single line the number of ways to connect the 2n numbers into pairs.

    Sample Input
    2
    3
    -1

    Sample Output
    2
    5

    分析:
    圆上两点不相交连线
    题目可以抽象为凸多边形定点两两连线且互不相交,求方案数
    第1个点只能和偶数下标的点相连,
    不管怎么连,多边形都能被分成两部分
    f[n]=∑f[i]*f[n-1-i]
    卡特兰数模型

    这里写图片描述

    这道题没有模数了
    所以我们只能选择高精度

    tip

    代码中写的是高乘低和高除低
    不是特别优美

    //这里写代码片
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    
    using namespace std;
    
    int n;
    int a[103][103];
    int len[103];
    
    void catalan()      //递推求解 
    {
        len[1]=1;
        a[1][1]=1;
        int l=1;
        for (int i=2;i<=100;i++)
        {
            for (int j=1;j<=l;j++)           //先暴力乘上 
                a[i][j]=a[i-1][j]*(4*i-2);
    
            int d=0;                         //进位的处理 
            for (int j=1;j<=l;j++)
            {
                a[i][j]+=d;
                d=a[i][j]/10;
                a[i][j]%=10;
            }
            while (d)
            {
                a[i][++l]=d;
                d=a[i][l]/10;
                a[i][l]%=10;
            }
    
            d=0;
            for (int j=l;j>=1;j--)           //   /(n+1)
            {
                int t=d*10+a[i][j];
                a[i][j]=t/(i+1);
                d=t%(i+1);
            }
    
            while (a[i][l]==0) l--;
            len[i]=l;
        }
    }
    
    int main()
    {
        catalan();
        scanf("%d",&n);
        while (n!=-1)
        {
            for (int i=len[n];i>=1;i--)
                printf("%d",a[n][i]);
            puts("");
            scanf("%d",&n);
        }
    }
  • 相关阅读:
    vsphere平台windows虚拟机克隆的小插曲(无法登陆系统)
    mysql破解root用户密码总结
    mysql查询缓存参数
    mysql字符乱码
    做为一名dba你应该知道这些数据恢复
    mysql小技巧
    使用explain查看mysql查询执行计划
    mysql语句 索引操作
    mysqlbinglog基于即时点还原
    数据结构和算法(3)-向量,列表与序列
  • 原文地址:https://www.cnblogs.com/wutongtong3117/p/7673058.html
Copyright © 2011-2022 走看看