zoukankan      html  css  js  c++  java
  • uoj#246. 【UER #7】套路(dp+分块?分类讨论?)

    题目链接

    分析:
    目前为止我只能理解dp部分

    我就喜欢这种单纯不做作的题目
    一看名字就明白了这道题的本质

    中二的题目描述

    很显然,我们的关键就是求出最小相似度
    朴素算法n^4

    如果我们现在有一个权值数组
    显然,每一个数只可能与最邻近ta的数产生贡献
    假设我们要求[i,j]之间的最小差距
    那我们可以分成两部分[i,k],[k+1,j]
    枚举k,取最小就可以了

    但是这样的复杂度是n^3

    然而我们全然不用枚举这个k

    f[i][j]=abs(a[i]-a[j]) //i+1==j
    f[i][j]=min{f[i+1][j],f[i][j-1],abs(a[i]-a[j])} //j-i>1

    那还是n^2的,我们考虑能不能再次优化,去掉一维
    空间:i的转移只牵扯到i和i-1,所以可以滚动数组
    更进一步,因为当前状态i需要用到i+1的状态,所以我们倒着推
    每次让当前的覆盖上一次的,上式中f[i][j]需要用到f[i+1][j]的结果现在的话直接继承
    这样我们就可以在空间上直接去掉一维

    f[i]=min(f[i],f[i-1])

    注意转换成一维后f[i]表示的是终点在i的区间
    这里写图片描述

    最终算法:
    实际上的基于dp的分类讨论
    如果一个区间的长度是x,那么最小差值一定不超过m/(x-1)
    那么我们设一个常数s=sqrt(n)
    当x < s时,用算法一中的算法求解。
    当x>=s时,那么最小差不会超过 m/(s-1)
    我们枚举差值|z-x|<=m/(s-1) ,然后找到权值z最近一次出现的位置,然后计算答案
    但是这样还是不够,我们必须保证两个位置之间不存在再小的差值
    所以我们还需要一个数组g[i]来记录差值i最近一次出现的位置,
    那么g[i]+1一定是在差值i+1或者更大的范围内,所以用(posx-g[i]-1)*(i+1)来更新答案

    详尽题解

    这里写代码片
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<cmath>
    #define ll long long
    
    using namespace std;
    
    const int N=200002;
    int n,m,k;
    int pos[N],g[N];
    ll f[N];
    ll a[N],ans=0;
    
    ll abs(ll x){if (x>0) return x; else return -x;}
    
    int main()
    {
        scanf("%d%d%d",&n,&m,&k);
        for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
        int s=floor(sqrt(n));
        memset(f,127,sizeof(f));   //INF
        for (int i=n;i>=1;i--)
        {
            for (int j=i+1;j<=min(n,i+s-1);j++)   //只做块内的
            {
                f[j]=min(f[j],f[j-1]);
                f[j]=min(f[j],abs(a[j]-a[i]));
                if (j-i+1>=k) ans=max(ans,(ll)(j-i)*f[j]);
            } 
        }
        for (int i=1;i<=n;i++)
        {
            int t=m/s;
            for (int j=0;j<=t+1;j++)
            {
                ll yy=a[i]+j;
                ll y=a[i]-j;
                if (j>=1) g[j]=max(g[j-1],g[j]);
                if (y>=1) g[j]=max(g[j],pos[y]);
                if (yy<=m) g[j]=max(g[j],pos[yy]);
                if (i-g[j]+1>max(s,k)) ans=max(ans,(ll)(i-g[j]-1)*(ll)(j+1));
            }
            pos[a[i]]=i;
        }
        printf("%lld
    ",ans);
        return 0;
    }
  • 相关阅读:
    最近一月研报推荐次数最多的最热股票
    【2019年07月22日】A股最便宜的股票
    【07月19日】指数估值排名
    北上资金近1周流入排行榜
    主要股东近3年净买入排名
    【07月16日】A股滚动市净率PB历史新低排名
    【07月15日】A股滚动市盈率PE最低排名
    最近3年股息率最高排名
    主要股东近3年净买入排名
    【07月09日】预分红股息率最高排名
  • 原文地址:https://www.cnblogs.com/wutongtong3117/p/7673197.html
Copyright © 2011-2022 走看看