zoukankan      html  css  js  c++  java
  • poj2417 bzoj3239 Discrete Logging(bsgs)

    Description

    Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
    BL == N (mod P)

    Input
    Read several lines of input, each containing P,B,N separated by a space.

    Output
    For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print “no solution”.

    Sample Input
    5 2 1
    5 2 2
    5 2 3
    5 2 4
    5 3 1
    5 3 2
    5 3 3
    5 3 4
    5 4 1
    5 4 2
    5 4 3
    5 4 4
    12345701 2 1111111
    1111111121 65537 1111111111

    Sample Output
    0
    1
    3
    2
    0
    3
    1
    2
    0
    no solution
    no solution
    1
    9584351
    462803587

    Hint
    The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat’s theorem that states
    B(P-1) == 1 (mod P)

    for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat’s theorem is that for any m
    B(-m) == B(P-1-m) (mod P) .

    分析:
    bsgs

    tip

    板子打对,万事ok

    费马定理的推论
    X^(-m)≡X^(p-1-m) (mod p)
    p为素数

    终于知道为什么tmp是这么计算的了

    这里写代码片
    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<map>
    #define ll long long
    
    using namespace std;
    
    ll x,z,p;
    map<ll,ll> mp;
    
    ll KSM(ll a,ll b,ll p)
    {
        ll t=1;
        a%=p;
        while (b)
        {
            if (b&1) 
               t=(t%p*a%p)%p;
            b>>=1;
            a=(a%p*a%p)%p;
        }
        return t%p;
    }
    
    ll bsgs(ll x,ll z,ll p)
    {
        mp.clear();
        x%=p; z%=p;
        if (x==0&&z==0) return 0;
        if (x==0) return -1;
        ll m=(ll)ceil(sqrt((double)p)),now=1;
        mp[1]=m+1;
        for (ll i=1;i<m;i++)
        {
            now=(now%p*x%p)%p;
            if (!mp[now]) mp[now]=i;
        }
        ll inv=1,tmp=KSM(x,p-m-1,p);
        for (ll k=0;k<m;k++)
        {
            ll x1=z%p*inv%p;
            ll i=mp[(z%p*inv%p)%p];
            if (i)
            {
                if (i==m+1) i=0;
                return k*m+i;
            }
            inv=(inv%p*tmp%p)%p;
        }
        return -1;  
    }
    
    int main()
    {
        while (scanf("%lld%lld%lld",&p,&x,&z)!=EOF)
        {
            ll ans=bsgs(x,z,p);
            if (ans!=-1) printf("%lld
    ",ans);
            else printf("no solution
    ");
        }
        return 0;
    }
  • 相关阅读:
    大整数乘法
    Independent Components Analysis:独立成分分析
    因子分析(Factor analysis)
    EM算法原理详解
    简易解说拉格朗日对偶(Lagrange duality)
    机器学习中有关概率论知识的小结
    高斯混合和EM算法
    java
    java
    java
  • 原文地址:https://www.cnblogs.com/wutongtong3117/p/7673238.html
Copyright © 2011-2022 走看看