zoukankan      html  css  js  c++  java
  • bzoj4719 [Noip2016]天天爱跑步

    Description
    小c同学认为跑步非常有趣,于是决定制作一款叫做《天天爱跑步》的游戏。?天天爱跑步?是一个养成类游戏,需要
    玩家每天按时上线,完成打卡任务。这个游戏的地图可以看作一一棵包含 N个结点和N-1 条边的树, 每条边连接两
    个结点,且任意两个结点存在一条路径互相可达。树上结点编号为从1到N的连续正整数。现在有个玩家,第个玩家的
    起点为Si ,终点为Ti 。每天打卡任务开始时,所有玩家在第0秒同时从自己的起点出发, 以每秒跑一条边的速度,
    不间断地沿着最短路径向着自己的终点跑去, 跑到终点后该玩家就算完成了打卡任务。 (由于地图是一棵树, 所以
    每个人的路径是唯一的)小C想知道游戏的活跃度, 所以在每个结点上都放置了一个观察员。 在结点的观察员会选
    择在第Wj秒观察玩家, 一个玩家能被这个观察员观察到当且仅当该玩家在第Wj秒也理到达了结点J 。 小C想知道
    每个观察员会观察到多少人?注意: 我们认为一个玩家到达自己的终点后该玩家就会结束游戏, 他不能等待一 段时
    间后再被观察员观察到。 即对于把结点J作为终点的玩家: 若他在第Wj秒重到达终点,则在结点J的观察员不能观察
    到该玩家;若他正好在第Wj秒到达终点,则在结点的观察员可以观察到这个玩家。

    Input
    第一行有两个整数N和M 。其中N代表树的结点数量, 同时也是观察员的数量, M代表玩家的数量。
    接下来n-1 行每行两个整数U和V ,表示结点U 到结点V 有一条边。
    接下来一行N 个整数,其中第个整数为Wj , 表示结点出现观察员的时间。
    接下来 M行,每行两个整数Si和Ti,表示一个玩家的起点和终点。
    对于所有的数据,保证 。
    1<=Si,Ti<=N,0<=Wj<=N

    Output
    输出1行N 个整数,第个整数表示结点的观察员可以观察到多少人。

    Sample Input
    6 3
    2 3
    1 2
    1 4
    4 5
    4 6
    0 2 5 1 2 3
    1 5
    1 3
    2 6

    Sample Output
    2 0 0 1 1 1

    HINT
    对于1号点,W1=0,故只有起点为1号点的玩家才会被观察到,所以玩家1和玩家2被观察到,共2人被观察到。
    对于2号点,没有玩家在第2秒时在此结点,共0人被观察到。
    对于3号点,没有玩家在第5秒时在此结点,共0人被观察到。
    对于4号点,玩家1被观察到,共1人被观察到。
    对于5号点,玩家1被观察到,共1人被观察到。
    对于6号点,玩家3被观察到,共1人被观察到

    分析:
    这道题好像和bzoj上有一道叫游戏的树剖题很像
    每个人随时间跑动很烦啊
    如果我们先不管这些,那这些路线就变成了一条条覆盖在树上的树链了
    我们就可以用树链剖分中的树链加值搞一搞就好了

    那我们现在考虑一下有

    设t[i]是观察时间
    我们把一条树链分成两部分,左链和右链
    右链中,能够统计到的到达时间是
    deep[s]-deep[i]=t[i],时间+深度是定值:deep[s]=deep[i]+t[i]
    在左链中,能够统计到的到达时间是
    deep[i]+deep[s]-2*deep[lca]=t[i]
    深度-时间是定值:2*deep[lca]-deep[s]=deep[i]-t[i]

    这里写图片描述

    这样我们就可以分成到达时间上升下降的两段

    说明一下上升的树链
    将s到lca的路径标上deep[s],
    最后ans[i]就等于在i点上等于deep[i]+t[i]的标记的个数
    但直接标记路径上所有的点太慢,
    我们可以在s点打上+1的标记,lca点打上-1的标记,然后dfs做求子树和,
    为避免将其它子树的和计入ans,
    只要记录进入这个点时的cnt[deep[i]+t[i]],
    访问完这个点后用新的cnt[deep[i]+t[i]]减去进来的就可以了

    这里写代码片
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<vector>
    
    using namespace std;
    
    const int N=500050;
    int n,m;
    struct nd{
        int x,y,nxt;
    };
    nd way[N<<1];
    struct node{
        int x,y,sum;
    };
    node t[N<<2];
    int deep[N],size[N],pre[N],son[N],top[N],num[N],shu[N],cnt=0,tot=0,dfn[N];
    struct nod{
        int s,t,lca,len;
    };
    nod q[N];
    int T[N],ans[N],tong[N<<1],tong2[N<<1],st[N];
    vector<int> a[N],b[N],c[N];
    
    void add(int u,int w)
    {
        tot++;
        way[tot].x=u;way[tot].y=w;way[tot].nxt=st[u];st[u]=tot;
        tot++;
        way[tot].x=w;way[tot].y=u;way[tot].nxt=st[w];st[w]=tot;
    }
    
    void dfs1(int now,int fa,int dep)
    {
        deep[now]=dep;
        size[now]=1;
        pre[now]=fa;
        int mx=0;
        for (int i=st[now];i;i=way[i].nxt)
            if (way[i].y!=fa)
            {
                dfs1(way[i].y,now,dep+1);
                size[now]+=size[way[i].y];
                if (mx<size[way[i].y])
                {
                    mx=size[way[i].y];
                    son[now]=way[i].y;
                }
            }
    }
    
    void dfs2(int now,int fa)
    {
        if (son[fa]!=now) top[now]=now;
        else top[now]=top[fa];
        dfn[now]=++cnt; shu[dfn[now]]=now;
        if (son[now])
        {
            dfs2(son[now],now);
            for (int i=st[now];i;i=way[i].nxt)
                if (way[i].y!=fa&&way[i].y!=son[now])
                    dfs2(way[i].y,now);
        } 
    }
    
    int LCA(int u,int w)
    {
        int f1=top[u];
        int f2=top[w];
        while (f1!=f2)
        {
            if (deep[f1]<deep[f2]) swap(f1,f2),swap(u,w);
            u=pre[f1];
            f1=top[u];
        }
        if (deep[u]>deep[w]) swap(u,w);
        return u;
    }
    
    void dfs_up(int x,int fa)
    {
        int now=T[x]+deep[x];
        int last=tong[now+N];
        for (int i=st[x];i;i=way[i].nxt)
            if (way[i].y!=fa) 
               dfs_up(way[i].y,x);
        tong[deep[x]+N]+=num[x];
        ans[x]=tong[now+N]-last;
        for (int i=0;i<a[x].size();i++) tong[deep[a[x][i]]+N]--;
    }
    
    void dfs_down(int x,int fa)
    {
        int now=deep[x]-T[x];
        int last=tong2[now+N];
        for (int i=st[x];i;i=way[i].nxt)
            if (way[i].y!=fa)
               dfs_down(way[i].y,x);
        for (int i=0;i<b[x].size();i++) tong2[N+b[x][i]]++;
        ans[x]+=tong2[now+N]-last;
        for (int i=0;i<c[x].size();i++) tong2[N+c[x][i]]--;
    }
    
    int main()
    {
        scanf("%d%d",&n,&m);
        for (int i=1;i<n;i++)
        {
            int u,w;
            scanf("%d%d",&u,&w);
            add(u,w);
        }
        dfs1(1,0,1);
        dfs2(1,0);
        for (int i=1;i<=n;i++) scanf("%d",&T[i]);
        for (int i=1;i<=m;i++)
        {
            scanf("%d%d",&q[i].s,&q[i].t);
            num[q[i].s]++;
            q[i].lca=LCA(q[i].s,q[i].t);
            q[i].len=deep[q[i].s]+deep[q[i].t]-2*deep[q[i].lca];
            a[q[i].lca].push_back(q[i].s);
        }
        dfs_up(1,0);
        for (int i=1;i<=m;i++)
        {
            b[q[i].t].push_back(deep[q[i].t]-q[i].len);
            c[q[i].lca].push_back(deep[q[i].t]-q[i].len);
        }
        dfs_down(1,0);
        for (int i=1;i<=m;i++) if (deep[q[i].s]-deep[q[i].lca]==T[q[i].lca]) ans[q[i].lca]--;
        printf("%d",ans[1]);
       for(int i=2;i<=n;i++) printf(" %d",ans[i]);
        return 0;
    }
  • 相关阅读:
    Idea中SpringBoot热部署搭建
    Redis 集群搭建
    centos7 vsftp搭建
    Centos 7 安装jdk
    Centos7 安装nginx
    Xshell 连接Linux
    python 的mysql 操作
    NIO/BIO
    java基础-3
    java基础-2
  • 原文地址:https://www.cnblogs.com/wutongtong3117/p/7673298.html
Copyright © 2011-2022 走看看