Last non-zero Digit in N! |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 1027 Accepted Submission(s): 438 |
Problem Description
The expression N!, read as "N factorial," denotes the product of the first N positive integers, where N is nonnegative. So, for example,
N N! 0 1 1 1 2 2 3 6 4 24 5 120 10 3628800 For this problem, you are to write a program that can compute the last non-zero digit of the factorial for N. For example, if your program is asked to compute the last nonzero digit of 5!, your program should produce "2" because 5! = 120, and 2 is the last nonzero digit of 120. |
Input
Input to the program is a series of nonnegative integers, each on its own line with no other letters, digits or spaces. For each integer N, you should read the value and compute the last nonzero digit of N!.
|
Output
For each integer input, the program should print exactly one line of output containing the single last non-zero digit of N!.
|
Sample Input
1 2 26 125 3125 9999 |
Sample Output
1 2 4 8 2 8 |
Source
South Central USA 1997
|
Recommend
JGShining
|
#include <bits/stdc++.h> using namespace std; /* * 完全大数模板 * 输出cin>>a * 输出a.print(); * 注意这个输入不能自动去掉前导0的,可以先读入到char数组,去掉前导0,再用构造函数。 */ #define MAXN 9999 #define MAXSIZE 1010 #define DLEN 4 int data[]={1,1,2,6,4,4,4,8,4,6};//0-9的最后一位非零数(去掉5的) int TwoMod[]={2,4,8,6}; class BigNum { public: int a[500]; //可以控制大数的位数 int len; public: BigNum() { len=1;memset(a,0,sizeof(a)); } //构造函数 BigNum(const int); //将一个int类型的变量转化成大数 BigNum(const char*); //将一个字符串类型的变量转化为大数 BigNum(const BigNum &); //拷贝构造函数 BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算 friend istream& operator>>(istream&,BigNum&); //重载输入运算符 friend ostream& operator<<(ostream&,BigNum&); //重载输出运算符 BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的相加运算 BigNum operator-(const BigNum &)const; //重载减法运算符,两个大数之间的相减运算 BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的相乘运算 BigNum operator/(const int &)const; //重载除法运算符,大数对一个整数进行相除 运算 BigNum operator^(const int &)const; //大数的n次方运算 int operator%(const int &)const; //大数对一个int类型的变量进行取模运算 bool operator>(const BigNum &T)const; //大数和另一个大数的大小比较 bool operator>(const int &t)const; //大数和一个int类型的变量的大小比较 void print(); //输出大数 }; BigNum::BigNum(const int b) //将一个int类型的变量转化为大数 { int c,d=b; len=0; memset(a,0,sizeof(a)); while(d>MAXN) { c=d-(d/(MAXN+1))*(MAXN+1); d=d/(MAXN+1); a[len++]=c; } a[len++]=d; } BigNum::BigNum(const char *s) //将一个字符串类型的变量转化为大数 { int t,k,index,L,i; memset(a,0,sizeof(a)); L=strlen(s); len=L/DLEN; if(L%DLEN) len++; index=0; for(i=L-1;i>=0;i-=DLEN) { t=0; k=i-DLEN+1; if(k<0) k=0; for(int j=k;j<=i;j++) t=t*10+s[j]-'0'; a[index++]=t; } } BigNum::BigNum(const BigNum &T):len(T.len) //拷贝构造函数 { int i; memset(a,0,sizeof(a)); for(i=0;i<len;i++) a[i]=T.a[i]; } BigNum & BigNum::operator=(const BigNum &n) //重载赋值运算符,大数之间赋值运算 { int i; len=n.len; memset(a,0,sizeof(a)); for(i=0;i<len;i++) a[i]=n.a[i]; return *this; } istream& operator>>(istream &in,BigNum &b) { char ch[MAXSIZE*4]; int i=-1; in>>ch; int L=strlen(ch); int count=0,sum=0; for(i=L-1;i>=0;) { sum=0; int t=1; for(int j=0;j<4&&i>=0;j++,i--,t*=10) { sum+=(ch[i]-'0')*t; } b.a[count]=sum; count++; } b.len=count++; return in; } ostream& operator<<(ostream& out,BigNum& b) //重载输出运算符 { int i; cout<<b.a[b.len-1]; for(i=b.len-2;i>=0;i--) { printf("%04d",b.a[i]); } return out; } BigNum BigNum::operator+(const BigNum &T)const //两个大数之间的相加运算 { BigNum t(*this); int i,big; big=T.len>len?T.len:len; for(i=0;i<big;i++) { t.a[i]+=T.a[i]; if(t.a[i]>MAXN) { t.a[i+1]++; t.a[i]-=MAXN+1; } } if(t.a[big]!=0) t.len=big+1; else t.len=big; return t; } BigNum BigNum::operator-(const BigNum &T)const //两个大数之间的相减运算 { int i,j,big; bool flag; BigNum t1,t2; if(*this>T) { t1=*this; t2=T; flag=0; } else { t1=T; t2=*this; flag=1; } big=t1.len; for(i=0;i<big;i++) { if(t1.a[i]<t2.a[i]) { j=i+1; while(t1.a[j]==0) j++; t1.a[j--]--; while(j>i) t1.a[j--]+=MAXN; t1.a[i]+=MAXN+1-t2.a[i]; } else t1.a[i]-=t2.a[i]; } t1.len=big; while(t1.a[len-1]==0 && t1.len>1) { t1.len--; big--; } if(flag) t1.a[big-1]=0-t1.a[big-1]; return t1; } BigNum BigNum::operator*(const BigNum &T)const //两个大数之间的相乘 { BigNum ret; int i,j,up; int temp,temp1; for(i=0;i<len;i++) { up=0; for(j=0;j<T.len;j++) { temp=a[i]*T.a[j]+ret.a[i+j]+up; if(temp>MAXN) { temp1=temp-temp/(MAXN+1)*(MAXN+1); up=temp/(MAXN+1); ret.a[i+j]=temp1; } else { up=0; ret.a[i+j]=temp; } } if(up!=0) ret.a[i+j]=up; } ret.len=i+j; while(ret.a[ret.len-1]==0 && ret.len>1) ret.len--; return ret; } BigNum BigNum::operator/(const int &b)const //大数对一个整数进行相除运算 { BigNum ret; int i,down=0; for(i=len-1;i>=0;i--) { ret.a[i]=(a[i]+down*(MAXN+1))/b; down=a[i]+down*(MAXN+1)-ret.a[i]*b; } ret.len=len; while(ret.a[ret.len-1]==0 && ret.len>1) ret.len--; return ret; } int BigNum::operator%(const int &b)const //大数对一个 int类型的变量进行取模 { int i,d=0; for(i=len-1;i>=0;i--) d=((d*(MAXN+1))%b+a[i])%b; return d; } BigNum BigNum::operator^(const int &n)const //大数的n次方运算 { BigNum t,ret(1); int i; if(n<0)exit(-1); if(n==0)return 1; if(n==1)return *this; int m=n; while(m>1) { t=*this; for(i=1;(i<<1)<=m;i<<=1) t=t*t; m-=i; ret=ret*t; if(m==1) ret=ret*(*this); } return ret; } bool BigNum::operator>(const BigNum &T)const //大数和另一个大数的大小比较 { int ln; if(len>T.len) return true; else if(len==T.len) { ln=len-1; while(a[ln]==T.a[ln]&&ln>=0) ln--; if(ln>=0 && a[ln]>T.a[ln]) return true; else return false; } else return false; } bool BigNum::operator>(const int &t)const //大数和一个int类型的变量的大小比较 { BigNum b(t); return *this>b; } void BigNum::print() //输出大数 { int i; printf("%d",a[len-1]); for(i=len-2;i>=0;i--) printf("%04d",a[i]); printf(" "); } /* 把5和5的倍数的数拿出来,并且将该位置替换成1这样 0-9的最后一位非零数为: 1 1 2 6 4 4 4 8 4 6 10-19最后一位非零数为: 6 6 2 6 4 4 4 8 4 6 可以看出将5拿出来之后可以发现规律令d[0......9]={1 1 2 6 4 4 4 8 4 6}; 那么d[n]=d[n%10]*6; 这里*6操作实际上是×6取最后一位,所以从10往后每10为以循环 然后就是5的倍数的方面了,5*10*15*20*25*30.....提取公因子之后就变成(5^p)*p!因为每一位都提出来一个5嘛,这里p=你要计算的值/5; 每一次这个操作都必须要有p个2来把5给消掉,那么就需要p个2也就是2^p,然后就会得到:令f[n]表示的n的阶乘的最后一位非零数字就得到公式: f[n]=(d[n]/2^p)*f[p],我们发现: 2^1%10=2, 2^2%10=4, 2^3%10=8, 2^4%10=6, 每四个一循环,当P==0的时候比较特殊,2^P%10=1 除上2^P其实就是乘上2^(-P),这样处理就简单了,根据循环的性质就可以将T[N] 简化成T[N] = X[N] * 2^(-P) * T[P],这样一来,算法的复杂度就只有O(log5(N)) 了。并且2是每四个一循环,2^(-P) = 2^(-P % 4 + 4)。 */ int FindNoneZeroTail(BigNum Bn)//查找最后一位非零的数 { if(!Bn.len) return 1;//0!=1 if(Bn.len==1)//如果是一位数的话 { if(Bn.a[0]<5)//小于5的当然能直接输出了 { return data[Bn.a[0]]; } else if(Bn.a[0]<10)//其余的 { //因为x/y=x*y(-1)次方,所以除以*TwoMod[2]就是除2 return data[Bn.a[0]]*TwoMod[2]%10;//这里面肯定只有一个5被拿出来了,所以只需要用一个2来消除5就行了 } } int v=Bn%10; Bn=Bn/5;//这一层操作有这么多的5 int XN=data[v]*6%10;//当前数字阶乘的最后一位非零数字 int idx=4-Bn%4; if(idx==0) { idx=4; } XN*=TwoMod[idx-1]; return XN*FindNoneZeroTail(Bn)%10; } int main() { freopen("C:\Users\acer\Desktop\in.txt","r",stdin); BigNum a; while(cin>>a) { printf("%d ",FindNoneZeroTail(a)); } return 0; }