zoukankan      html  css  js  c++  java
  • Fibonacci Numbers

    Fibonacci Numbers

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 81 Accepted Submission(s): 46
     
    Problem Description
    The Fibonacci sequence is the sequence of numbers such that every element is equal to the sum of the two previous elements, except for the first two elements f0 and f1 which are respectively zero and one.

    What is the numerical value of the nth Fibonacci number?
     
    Input
    For each test case, a line will contain an integer i between 0 and 108 inclusively, for which you must compute the ith Fibonacci number fi. Fibonacci numbers get large pretty quickly, so whenever the answer has more than 8 digits, output only the first and last 4 digits of the answer, separating the two parts with an ellipsis (“...”).

    There is no special way to denote the end of the of the input, simply stop when the standard input terminates (after the EOF).
     
     
    Sample Input
    0
    1
    2
    3
    4
    5
    35
    36
    37
    38
    39
    40
    64
    65
     
    Sample Output
    0
    1
    1
    2
    3
    5
    9227465
    14930352
    24157817
    39088169
    63245986
    1023...4155
    1061...7723
    1716...7565
     
     
    Source
    IPCP 2005 Northern Preliminary for Northeast North-America
     
    Recommend
    lcy
     
    /*
    题意:求第n个斐波那契数列的值,只需要前四位,后四位
    
    初步思路:后四位好说,膜一下就行了重要的就是前四位.总共1e8的时间,感觉用大数爆都会超时
    
    #补充:后四位矩阵膜10000就行了,前四位可以用通项公式取对数的方法求。
    
    */
    #include<bits/stdc++.h>
    #define ll long long
    #define mod 10000
    using namespace std;
    /********************************矩阵模板**********************************/
    class Matrix {
        public:
            int a[2][2];
    
            void init(int x) {
                memset(a,0,sizeof(a));
                if (x)
                    for (int i = 0; i < 2 ; i++)
                        a[i][i] = 1;
            }
    
            Matrix operator +(Matrix b) {
                Matrix c;
                for (int i = 0; i < 2; i++)
                    for (int j = 0; j < 2; j++)
                        c.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
                return c;
            }
    
            Matrix operator +(int x) {
                Matrix c = *this;
                for (int i = 0; i < 2; i++)
                    c.a[i][i] += x;
                return c;
            }
    
            Matrix operator *(Matrix b)
            {
                Matrix p; 
                p.init(0);
                for (int i = 0; i < 2; i++)
                    for (int j = 0; j < 2; j++)
                    for (int k = 0; k < 2; k++)
                        p.a[i][j] = (p.a[i][j] + (a[i][k]*b.a[k][j])%mod) % mod;
                return p;
            }
    
            Matrix power_1(int t) {
                Matrix Frist,p = *this;
                Frist.init(1);
                while (t) {
                    if (t & 1)
                        Frist=Frist*p;
                    p = p*p;
                    t >>= 1;
                }
                return Frist;
            }
            
            Matrix power_2(Matrix a,Matrix b,int x){
                while(x){
                    if(x&1){
                        b=a*b;
                    }
                    a=a*a;
                    x>>=1;
                }
                return b;
            }
    };
    /********************************矩阵模板**********************************/
    Matrix unit,init;
    ll f[45];
    ll n;
    int main(){
        // freopen("in.txt","r",stdin);
        f[0]=0;
        f[1]=1;
        for(int i=2;i<40;i++){
            f[i]=f[i-1]+f[i-2];
        }
        while(scanf("%lld",&n)!=EOF){
            if(n<40){
                printf("%lld
    ",f[n]);
                continue;
            }
            unit.a[0][0]=1;
            unit.a[0][1]=0;
            unit.a[1][0]=0;
            unit.a[1][1]=1;
            
            init.a[0][0]=1;
            init.a[0][1]=1;
            init.a[1][0]=1;
            init.a[1][1]=0;
            
            init=init.power_1(n-1);//有问题
            unit=unit*init;
            int Last=unit.a[0][0];
            
            long double Frist=-0.5 * log(5.0) / log(10.0) + ((long double)n) * log((sqrt(5.0)+1.0)/2.0) / log(10.0);
                Frist-=floor(Frist);
                Frist=pow(10,Frist);
                while(Frist<1000)
                    Frist*=10;
            printf("%d...%04d
    ",(int) Frist,Last);
        }
        return 0;
    }
  • 相关阅读:
    Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
    Codeforces 796C. Bank Hacking
    Codeforces 792B. Counting-out Rhyme
    gym 101164 H.Pub crawl 凸包
    hdu 6053 TrickGCD 筛法
    hdu 6041 I Curse Myself 无向图找环+优先队列
    bzoj 2243: [SDOI2011]染色 线段树区间合并+树链剖分
    codeforces gym 101164 K Cutting 字符串hash
    树链剖分求lca
    UESTC 1697 简单GCD问题(一) 筛法
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/6384810.html
Copyright © 2011-2022 走看看