Function
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 273 Accepted Submission(s): 99
Problem Description
You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1.
Define that the domain of function f is the set of integers from 0 to n−1, and the range of it is the set of integers from 0 to m−1.
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1.
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7.
Define that the domain of function f is the set of integers from 0 to n−1, and the range of it is the set of integers from 0 to m−1.
Please calculate the quantity of different functions f satisfying that f(i)=bf(ai) for each i from 0 to n−1.
Two functions are different if and only if there exists at least one integer from 0 to n−1 mapped into different integers in these two functions.
The answer may be too large, so please output it in modulo 109+7.
Input
The input contains multiple test cases.
For each case:
The first line contains two numbers n, m. (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1, the i-th number of which represents ai−1.
The third line contains m numbers, ranged from 0 to m−1, the i-th number of which represents bi−1.
It is guaranteed that ∑n≤106, ∑m≤106.
For each case:
The first line contains two numbers n, m. (1≤n≤100000,1≤m≤100000)
The second line contains n numbers, ranged from 0 to n−1, the i-th number of which represents ai−1.
The third line contains m numbers, ranged from 0 to m−1, the i-th number of which represents bi−1.
It is guaranteed that ∑n≤106, ∑m≤106.
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
Sample Input
3 2
1 0 2
0 1
3 4
2 0 1
0 2 3 1
Sample Output
Case #1: 4
Case #2: 4
Source
/* * @Author: Lyucheng * @Date: 2017-07-25 15:25:56 * @Last Modified by: Lyucheng * @Last Modified time: 2017-07-25 20:42:28 */ /* 题意:给你两个序列,定义一种函数 f(i)=b[f(ai)] ,问你已给出的序列可以构造出的函数的数量 思路:实际上就是从a集合到b集合的映射的组合,a中的一个循环节是一个整体,如果b中循环节的长度和a循环节的长度相同 或者是因子,那么就可以置换过来,满足这个条件,将结果组合一下就好 感悟:好气啊,想出来,但是没想到因子这个条件... */ #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> #define MAXN 100005 const long long MOD = 1e9+7; #define LL long long using namespace std; int n,m; int a[MAXN]; int b[MAXN]; bool visa[MAXN]; bool visb[MAXN]; vector<int> va; vector<int> vb; int ca=1; void init(){ va.clear(); vb.clear(); memset(visa,false,sizeof visa); memset(visb,false,sizeof visb); memset(a,0,sizeof a); memset(b,0,sizeof b); } int main(){ // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); while(scanf("%d%d",&n,&m)!=EOF){ init(); for(int i=0;i<n;i++){ scanf("%d",&a[i]); } for(int i=0;i<m;i++){ scanf("%d",&b[i]); } for(int i=0;i<n;i++){//求A的循环节 if(visa[i]==true) continue; int cur=0; int x=a[i]; while(x!=a[x]){ if(visa[x]==true) break;//走到了标记过的点 可能遇到没返回自己的循环了,也可能返回自己了 visa[x]=true; cur++; x=a[x]; } if(x==a[i]){ if(cur==0) va.push_back(1); else va.push_back(cur); }else{ va.push_back(1); int cnt=0; while(x!=a[x]){ cnt++; if(cnt>=cur) break; visa[x]=false; x=a[x]; } visa[a[i]]=true; } } for(int i=0;i<m;i++){//求B的循环节 if(visb[i]==true) continue; int cur=0; int x=b[i]; while(x!=b[x]){ if(visb[x]==true) break;//走到了标记过的点 可能遇到没返回自己的循环了,也可能返回自己了 visb[x]=true; cur++; x=b[x]; } if(x==b[i]){ if(cur==0) vb.push_back(1); else vb.push_back(cur); }else{ vb.push_back(1); int cnt=0; while(x!=b[x]){ cnt++; if(cnt>=cur) break; visb[x]=false; x=b[x]; } visb[b[i]]=true; } } LL res=1; for(int i=0;i<va.size();i++){ LL cur=0; for(int j=0;j<vb.size();j++){ if(va[i]%vb[j]==0){ cur+=( (LL)(vb[j]) ) %MOD; cur%=MOD; } } res=( (res%MOD) * (cur%MOD) )%MOD; } printf("Case #%d: %d ",ca++,res); } return 0; }