zoukankan      html  css  js  c++  java
  • HDU 6047 Maximum Sequence

    Maximum Sequence

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1152    Accepted Submission(s): 537


    Problem Description
    Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

    Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: an+1a2n. Just like always, there are some restrictions on an+1a2n: for each number ai, you must choose a number bk from {bi}, and it must satisfy ai≤max{aj-j│bk≤j<i}, and any bk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{2nn+1ai} modulo 109+7 .

    Now Steph finds it too hard to solve the problem, please help him.
     
    Input
    The input contains no more than 20 test cases.
    For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
    1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
     
    Output
    For each test case, print the answer on one line: max{2nn+1ai} modulo 109+7。
     
    Sample Input
    4 8 11 8 5 3 1 4 2
     
    Sample Output
    27
    Hint
    For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9; 2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
     
    Source
     
    /*
    * @Author: Lyucheng
    * @Date:   2017-07-28 15:53:31
    * @Last Modified by:   Lyucheng
    * @Last Modified time: 2017-07-28 17:38:20
    */
    /*
     题意:给你序列a,b,长度为n,让你构造a序列n+1~n*2的元素,有一个规则:
        ai≤max{aj-j│bk≤j<i}
    
     思路:线段树维护a的最大值
    */
    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <time.h>
    
    #define MAXN 250009
    #define lson i*2,l,m
    #define rson i*2+1,m+1,r
    #define INF 0x3f3f3f3f
    #define LL long long
    const LL MOD = 1e9+7;
    
    using namespace std;
    
    int n;
    int a[MAXN];
    int b[MAXN];
    int sum[MAXN*10];
    
    void pushup(int i,int l,int r){
        sum[i]=max(sum[i*2],sum[i*2+1]);
    }
    
    void build(int i,int l,int r){
        if(l==r){
            if(l<=n)
                sum[i]=a[l]-l;
            return;
        }
        int m=(l+r)/2;
        build(lson);
        build(rson);
        pushup(i,l,r);
    }
    
    void update(int key,int val,int i,int l,int r){
        if(l==r){
            sum[i]=val;
            return ;
        }
        int m=(l+r)/2;
        if(m>=key) update(key,val,lson);
        else update(key,val,rson);
        pushup(i,l,r);
    }
    
    int query(int ql,int qr,int i,int l,int r){
        if(ql<=l&&r<=qr){
            return sum[i];
        }
        int m=(l+r)/2;
        int res=-1;
        if(m>=ql) res=max(res,query(ql,qr,lson));
        if(m<qr) res=max(res,query(ql,qr,rson));
        return res;
    }
    
    int main(){ 
        // freopen("in.txt", "r", stdin);
        // freopen("out.txt", "w", stdout);
        while(scanf("%d",&n)!=EOF){
            for(int i=1;i<=n;i++){
                scanf("%d",&a[i]);
            }
            for(int i=1;i<=n;i++){
                scanf("%d",&b[i]);
            }
            build(1,1,n*2);
            sort(b+1,b+n+1);
            LL res=0;
            for(int i=n+1;i<=2*n;i++){
                int l=b[i-n];//b中剩余最小的
                int cur=query(l,i-1,1,1,n*2);//a中最大的
                update(i,cur-i,1,1,n*2);
                res+=cur;
                res%=MOD;
            }
            printf("%lld
    ",res);
        }
        return 0;
    }
  • 相关阅读:
    face_recognition人脸识别框架
    POJ 3260 The Fewest Coins(多重背包问题, 找零问题, 二次DP)
    POJ 2392 Space Elevator(多重背包变形)
    POJ 1014 Dividing(多重背包, 倍增优化)
    POJ 1384 Piggy-Bank(完全背包)
    POJ 2063 Investment(完全背包)
    POJ 3211 Washing Cloths(01背包变形)
    POJ 1837 Balance(01背包变形, 枚举DP)
    POJ 2923 Relocation(01背包变形, 状态压缩DP)
    POJ 1243 One Person
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/7251608.html
Copyright © 2011-2022 走看看