zoukankan      html  css  js  c++  java
  • HDU 1695 GCD

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 12935    Accepted Submission(s): 4905


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     
    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     
    Source
     
    Recommend
     
    /*
    * @Author: LyuC
    * @Date:   2017-10-06 17:08:18
    * @Last Modified by:   LyuC
    * @Last Modified time: 2017-10-07 15:16:16
    */
    /*
     题意:给你两个区间[a,b],[c,d],让你找有多少对(x,y)满足,x在[a,b],
        y在[c,d],gcd(x,y)==k
    
     思路:因为gcd(x,y)==k,所以x/k,y/k的最大公因子是1,也就是互质,因为
        他俩最大的因子都去掉了,所以问题转化为在[1,b/k],[1,d/k]区间内,
        找有多少对互质的数
        用上莫比乌斯反演:
            设F[n]为gcd(x,y)==n的倍数的数对的数量
              f[n]为gcd(x,y)==n的数对的数量
            很显然
                F[n]=Sigma(d|n)( f(d) );
            那么
                f[n]=sigma(n|d)( u(d/n)*F[d] );
    
        我们要的是f[1],所以
            f[1]=u[1]*F[1]+u[2]*F[2]+...+u[min(d/k,b/k)]*F[min(d/k,b/k)];
        这种情况下多算了很多:
            假设b<d
            那么实际上是算了两边,但是不能单纯的除2,因为(x,x)这样的算了一边
            所以
                res1=从1到min(b,d)的结果
                res2=从1到max(b,d)的结果
            res=res2-res1/2;
         这个在纸上画一下就很清楚了
    */ #include <bits/stdc++.h> #define MAXN 100005 #define LL long long using namespace std; int t; int a,b,c,d; int k; int f[MAXN]; bool check[MAXN]; int mu[MAXN]; int prime[MAXN]; LL res1; LL res2; inline void mobi(){ memset(check,false,sizeof check); mu[1]=1; int tol=0; for(int i=2;i<MAXN;i++){ if(!check[i]){ prime[tol++]=i; mu[i]=-1; } for(int j=0;j<tol;j++){ if(i*prime[j]>MAXN) break; check[i*prime[j]]=true; if(i%prime[j]==0){ mu[i*prime[j]]=0; break; }else{ mu[i*prime[j]]=-mu[i]; } } } } inline void init(){ res1=0; res2=0; } int main(){ // freopen("in.txt","r",stdin); mobi(); scanf("%d",&t); for(int ca=1;ca<=t;ca++){ init(); printf("Case %d: ",ca); scanf("%d%d%d%d%d",&a,&b,&c,&d,&k); if(k==0){ puts("0"); continue; } b/=k; d/=k; if(b>d){ swap(b,d); } for(int i=1;i<=b;i++){ res1+=(LL)mu[i]*(b/i)*(b/i); } for(int i=1;i<=b;i++){ res2+=(LL)mu[i]*(b/i)*(d/i); } printf("%lld ",res2-res1/2); } return 0; }
  • 相关阅读:
    常用正则表达式
    python 正则表达式 匹配指定字符遇到问题记录
    python 正则表达式 匹配指定字符
    python 正则表达式
    vim多窗口, 常用命令集
    linux寻找文件
    配置VIM环境
    本地计算机上的XXX服务启动后停止,某些服务在未由其它服务或程序使用时将自动停止
    Centos7安装python3、numpy、scipy、matplotlib、pandas等
    vmware虚拟机安装CentOS7无法上网以及键盘无法输入情况解决
  • 原文地址:https://www.cnblogs.com/wuwangchuxin0924/p/7634822.html
Copyright © 2011-2022 走看看