zoukankan      html  css  js  c++  java
  • HDU 1159 Common Subsequence 公共子序列 DP 水题重温

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 18201    Accepted Submission(s): 7697


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
     
    Sample Output
    4
    2
    0
     

    解题思路:

    开一个二维数组f[N][M]记录第一个数组取前N个数和第二个数组取前M个数的时候公共子序列的最大长度,最后输出f[l1][l2]即为最后结果。
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 using namespace std;
     6 char keng1[2000],keng2[2000];
     7 int con[2000][2000];
     8 int getmax(int a,int b)
     9 {if(a>b)return a;else return b;}
    10 int main()
    11 {
    12     int i,j,l1,l2,Max;
    13     keng1[0]=keng2[0]='#';
    14     while(scanf("%s%s",keng1+1,keng2+1)!=EOF)
    15     {
    16         Max=0;
    17         l1=strlen(keng1);
    18         l2=strlen(keng2);
    19         memset(con,0,sizeof(con));
    20         for(i=1;i<l1;i++)
    21         {
    22             for(j=1;j<l2;j++)
    23             {
    24                 if(keng1[i]==keng2[j])
    25                     con[i][j]=getmax(con[i][j],con[i-1][j-1]+1);
    26                 else
    27                 con[i][j]=getmax(con[i-1][j],con[i][j-1]);
    28             }
    29         }
    30         printf("%d
    ",con[l1-1][l2-1]);
    31     }
    32     return 0;
    33 }
    View Code
     
     
  • 相关阅读:
    如何创建html新元素
    jqury如何一次性实现连贯的一系列不同动作?
    jquery论callback事件发生与并列事件发生的区别
    jquery论三种动画停止的区别
    jquery animate多个属性设置为toggle的叠加效果
    如何一个键实现控制一个元素的隐藏和显示?
    jquery中mouseenter,mouseleave与hover的区别用法
    Zabbix探索:工作时间的设置
    Zabbix探索:网络设备监控3
    Zabbix探索:Proxy没有回传任何数据
  • 原文地址:https://www.cnblogs.com/wuwing/p/3307690.html
Copyright © 2011-2022 走看看