zoukankan      html  css  js  c++  java
  • 几种常见的查找算法

    一、顺序查找(基于无序链表,效率低下)

    package search;
    
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdIn;
    import edu.princeton.cs.algs4.StdOut;
    
    public class SequentialSearchST<Key, Value> {
        private int n;           // number of key-value pairs
        private Node first;      // the linked list of key-value pairs
    
        private class Node {
            private Key key;
            private Value val;
            private Node next;
    
            public Node(Key key, Value val, Node next)  {
                this.key  = key;
                this.val  = val;
                this.next = next;
            }
        }
    
        public SequentialSearchST() {
        }
    
        public int size() {
            return n;
        }
    
        public boolean isEmpty() {
            return size() == 0;
        }
    
        //判断是否包含key
        public boolean contains(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to contains() is null");
            return get(key) != null;
        }
    
        //查找key的值
        public Value get(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to get() is null");
            for (Node x = first; x != null; x = x.next) {
                if (key.equals(x.key))
                    return x.val;
            }
            return null;
        }
    
        //增加键值对
        public void put(Key key, Value val) {
            if (key == null) throw new IllegalArgumentException("first argument to put() is null");
            if (val == null) {
                delete(key);
                return;
            }
    
            for (Node x = first; x != null; x = x.next) {
                if (key.equals(x.key)) {
                    x.val = val;
                    return;
                }
            }
            first = new Node(key, val, first);
            n++;
        }
    
        //删除
        public void delete(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to delete() is null");
            first = delete(first, key);
        }
    
        // delete key in linked list beginning at Node x
        // warning: function call stack too large if table is large
        private Node delete(Node x, Key key) {
            if (x == null) return null;
            if (key.equals(x.key)) {
                n--;
                return x.next;
            }
            x.next = delete(x.next, key);
            return x;
        }
    
        public Iterable<Key> keys()  {
            Queue<Key> queue = new Queue<Key>();
            for (Node x = first; x != null; x = x.next)
                queue.enqueue(x.key);
            return queue;
        }
    
        public static void main(String[] args) {
            SequentialSearchST<String, Integer> st = new SequentialSearchST<String, Integer>();
            for (int i = 0; !StdIn.isEmpty(); i++) {
                String key = StdIn.readString();
                st.put(key, i);
            }
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
        }
    }

    二.有序数组中的二分查找

    package search;
    
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdIn;
    import edu.princeton.cs.algs4.StdOut;
    
    import java.util.NoSuchElementException;
    
    public class BinarySearchST<Key extends Comparable<Key>, Value> {
        private static final int INIT_CAPACITY = 2;
        private Key[] keys;
        private Value[] vals;
        private int n = 0;
    
        public BinarySearchST() {
            this(INIT_CAPACITY);
        }
    
        public BinarySearchST(int capacity) {
            keys = (Key[]) new Comparable[capacity];
            vals = (Value[]) new Object[capacity];
        }
    
        //数组扩容
        private void resize(int capacity) {
            assert capacity >= n;
            Key[]   tempk = (Key[])   new Comparable[capacity];
            Value[] tempv = (Value[]) new Object[capacity];
            for (int i = 0; i < n; i++) {
                tempk[i] = keys[i];
                tempv[i] = vals[i];
            }
            vals = tempv;
            keys = tempk;
        }
    
        public int size() {
            return n;
        }
    
        public boolean isEmpty() {
            return size() == 0;
        }
    
    
        //判断是否包含key
        public boolean contains(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to contains() is null");
            return get(key) != null;
        }
    
        //查找key的值
        public Value get(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to get() is null");
            if (isEmpty()) return null;
            int i = rank(key);
            if (i < n && keys[i].compareTo(key) == 0) return vals[i];
            return null;
        }
    
        //返回表中小于给定键的键的数量(二分查找)
        public int rank(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to rank() is null");
    
            int lo = 0, hi = n-1;
            while (lo <= hi) {
                int mid = lo + (hi - lo) / 2;
                int cmp = key.compareTo(keys[mid]);
                if      (cmp < 0) hi = mid - 1;
                else if (cmp > 0) lo = mid + 1;
                else return mid;
            }
            return lo;
        }
    
        //插入键值
        public void put(Key key, Value val)  {
            if (key == null) throw new IllegalArgumentException("first argument to put() is null");
    
            if (val == null) {
                delete(key);
                return;
            }
    
            int i = rank(key);
    
            // key已经存在于表中
            if (i < n && keys[i].compareTo(key) == 0) {
                vals[i] = val;
                return;
            }
    
            // insert new key-value pair
            if (n == keys.length) resize(2*keys.length);
    
            for (int j = n; j > i; j--)  {
                keys[j] = keys[j-1];
                vals[j] = vals[j-1];
            }
            keys[i] = key;
            vals[i] = val;
            n++;
    
            assert check();
        }
    
        public void delete(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to delete() is null");
            if (isEmpty()) return;
    
            // compute rank
            int i = rank(key);
    
            // key not in table
            if (i == n || keys[i].compareTo(key) != 0) {
                return;
            }
    
            for (int j = i; j < n-1; j++)  {
                keys[j] = keys[j+1];
                vals[j] = vals[j+1];
            }
    
            n--;
            keys[n] = null;  // to avoid loitering
            vals[n] = null;
    
            // resize if 1/4 full
            if (n > 0 && n == keys.length/4) resize(keys.length/2);
    
            assert check();
        }
    
        //删除最小键值对
        public void deleteMin() {
            if (isEmpty()) throw new NoSuchElementException("Symbol table underflow error");
            delete(min());
        }
    
        //删除最大键值对
        public void deleteMax() {
            if (isEmpty()) throw new NoSuchElementException("Symbol table underflow error");
            delete(max());
        }
    
        //最小值得键
        public Key min() {
            if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
            return keys[0];
        }
    
        //最大值得键
        public Key max() {
            if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
            return keys[n-1];
        }
    
        //查看索引k对应的key
        public Key select(int k) {
            if (k < 0 || k >= size()) {
                throw new IllegalArgumentException("called select() with invalid argument: " + k);
            }
            return keys[k];
        }
    
        //向下取整
        public Key floor(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to floor() is null");
            int i = rank(key);
            if (i < n && key.compareTo(keys[i]) == 0) return keys[i];
            if (i == 0) return null;
            else return keys[i-1];
        }
    
        //向下取整
        public Key ceiling(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
            int i = rank(key);
            if (i == n) return null;
            else return keys[i];
        }
    
        public int size(Key lo, Key hi) {
            if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
            if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
    
            if (lo.compareTo(hi) > 0) return 0;
            if (contains(hi)) return rank(hi) - rank(lo) + 1;
            else              return rank(hi) - rank(lo);
        }
    
        public Iterable<Key> keys() {
            return keys(min(), max());
        }
    
        public Iterable<Key> keys(Key lo, Key hi) {
            if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
            if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
    
            Queue<Key> queue = new Queue<Key>();
            if (lo.compareTo(hi) > 0) return queue;
            for (int i = rank(lo); i < rank(hi); i++)
                queue.enqueue(keys[i]);
            if (contains(hi)) queue.enqueue(keys[rank(hi)]);
            return queue;
        }
    
        private boolean check() {
            return isSorted() && rankCheck();
        }
    
        private boolean isSorted() {
            for (int i = 1; i < size(); i++)
                if (keys[i].compareTo(keys[i-1]) < 0) return false;
            return true;
        }
    
        // check that rank(select(i)) = i
        private boolean rankCheck() {
            for (int i = 0; i < size(); i++)
                if (i != rank(select(i))) return false;
            for (int i = 0; i < size(); i++)
                if (keys[i].compareTo(select(rank(keys[i]))) != 0) return false;
            return true;
        }
    
        public static void main(String[] args) {
            BinarySearchST<String, Integer> st = new BinarySearchST<String, Integer>();
            for (int i = 0; !StdIn.isEmpty(); i++) {
                String key = StdIn.readString();
                st.put(key, i);
            }
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
        }
    }

    三.二叉查找树

    package search;
    
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdIn;
    import edu.princeton.cs.algs4.StdOut;
    import java.util.NoSuchElementException;
    
    public class BST<Key extends Comparable<Key>, Value> {
        private Node root;             // root of BST
    
        private class Node {
            private Key key;           // sorted by key
            private Value val;         // associated data
            private Node left, right;  // left and right subtrees
            private int size;          // number of nodes in subtree
    
            public Node(Key key, Value val, int size) {
                this.key = key;
                this.val = val;
                this.size = size;
            }
        }
    
        public BST() {
        }
    
        public boolean isEmpty() {
            return size() == 0;
        }
    
        public int size() {
            return size(root);
        }
    
        // return number of key-value pairs in BST rooted at x
        private int size(Node x) {
            if (x == null) return 0;
            else return x.size;
        }
    
        //判断是否存在key
        public boolean contains(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to contains() is null");
            return get(key) != null;
        }
    
        //得到key对应的值
        public Value get(Key key) {
            return get(root, key);
        }
    
        private Value get(Node x, Key key) {
            if (key == null) throw new IllegalArgumentException("calls get() with a null key");
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) return get(x.left, key);
            else if (cmp > 0) return get(x.right, key);
            else              return x.val;
        }
    
        //新增键值对
        public void put(Key key, Value val) {
            if (key == null) throw new IllegalArgumentException("calls put() with a null key");
            if (val == null) {
                delete(key);
                return;
            }
            root = put(root, key, val);
            assert check();
        }
    
        private Node put(Node x, Key key, Value val) {
            if (x == null) return new Node(key, val, 1);
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) x.left  = put(x.left,  key, val);
            else if (cmp > 0) x.right = put(x.right, key, val);
            else              x.val   = val;
            x.size = 1 + size(x.left) + size(x.right);
            return x;
        }
    
    
        //删除最小值
        public void deleteMin() {
            if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
            root = deleteMin(root);
            assert check();
        }
    
        private Node deleteMin(Node x) {
            if (x.left == null) return x.right;
            x.left = deleteMin(x.left);
            x.size = size(x.left) + size(x.right) + 1;
            return x;
        }
    
        //删除最大值
        public void deleteMax() {
            if (isEmpty()) throw new NoSuchElementException("Symbol table underflow");
            root = deleteMax(root);
            assert check();
        }
    
        private Node deleteMax(Node x) {
            if (x.right == null) return x.left;
            x.right = deleteMax(x.right);
            x.size = size(x.left) + size(x.right) + 1;
            return x;
        }
    
        //删除操作
        public void delete(Key key) {
            if (key == null) throw new IllegalArgumentException("calls delete() with a null key");
            root = delete(root, key);
            assert check();
        }
    
        private Node delete(Node x, Key key) {
            if (x == null) return null;
    
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) x.left  = delete(x.left,  key);
            else if (cmp > 0) x.right = delete(x.right, key);
            else {
                if (x.right == null) return x.left;
                if (x.left  == null) return x.right;
                Node t = x;
                x = min(t.right);
                x.right = deleteMin(t.right);
                x.left = t.left;
            }
            x.size = size(x.left) + size(x.right) + 1;
            return x;
        }
    
        public Key min() {
            if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
            return min(root).key;
        }
    
        private Node min(Node x) {
            if (x.left == null) return x;
            else                return min(x.left);
        }
    
        public Key max() {
            if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
            return max(root).key;
        }
    
        private Node max(Node x) {
            if (x.right == null) return x;
            else                 return max(x.right);
        }
    
        //向下取整
        public Key floor(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to floor() is null");
            if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
            Node x = floor(root, key);
            if (x == null) throw new NoSuchElementException("argument to floor() is too small");
            else return x.key;
        }
    
        private Node floor(Node x, Key key) {
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if (cmp == 0) return x;
            if (cmp <  0) return floor(x.left, key);
            Node t = floor(x.right, key);
            if (t != null) return t;
            else return x;
        }
    
        public Key floor2(Key key) {
            Key x = floor2(root, key, null);
            if (x == null) throw new NoSuchElementException("argument to floor() is too small");
            else return x;
    
        }
    
        private Key floor2(Node x, Key key, Key best) {
            if (x == null) return best;
            int cmp = key.compareTo(x.key);
            if      (cmp  < 0) return floor2(x.left, key, best);
            else if (cmp  > 0) return floor2(x.right, key, x.key);
            else               return x.key;
        }
    
        //向上取整
        public Key ceiling(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
            if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
            Node x = ceiling(root, key);
            if (x == null) throw new NoSuchElementException("argument to floor() is too large");
            else return x.key;
        }
    
        private Node ceiling(Node x, Key key) {
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if (cmp == 0) return x;
            if (cmp < 0) {
                Node t = ceiling(x.left, key);
                if (t != null) return t;
                else return x;
            }
            return ceiling(x.right, key);
        }
    
        public Key select(int k) {
            if (k < 0 || k >= size()) {
                throw new IllegalArgumentException("argument to select() is invalid: " + k);
            }
            Node x = select(root, k);
            return x.key;
        }
    
        // Return key of rank k.
        private Node select(Node x, int k) {
            if (x == null) return null;
            int t = size(x.left);
            if      (t > k) return select(x.left,  k);
            else if (t < k) return select(x.right, k-t-1);
            else            return x;
        }
    
        //返回小于key的数量
        public int rank(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to rank() is null");
            return rank(key, root);
        }
    
        private int rank(Key key, Node x) {
            if (x == null) return 0;
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) return rank(key, x.left);
            else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
            else              return size(x.left);
        }
    
        public Iterable<Key> keys() {
            if (isEmpty()) return new Queue<Key>();
            return keys(min(), max());
        }
    
        public Iterable<Key> keys(Key lo, Key hi) {
            if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
            if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
    
            Queue<Key> queue = new Queue<Key>();
            keys(root, queue, lo, hi);
            return queue;
        }
    
        private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
            if (x == null) return;
            int cmplo = lo.compareTo(x.key);
            int cmphi = hi.compareTo(x.key);
            if (cmplo < 0) keys(x.left, queue, lo, hi);
            if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
            if (cmphi > 0) keys(x.right, queue, lo, hi);
        }
    
        public int size(Key lo, Key hi) {
            if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
            if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
    
            if (lo.compareTo(hi) > 0) return 0;
            if (contains(hi)) return rank(hi) - rank(lo) + 1;
            else              return rank(hi) - rank(lo);
        }
    
        //返回树的高度
        public int height() {
            return height(root);
        }
        private int height(Node x) {
            if (x == null) return -1;
            return 1 + Math.max(height(x.left), height(x.right));
        }
    
        public Iterable<Key> levelOrder() {
            Queue<Key> keys = new Queue<Key>();
            Queue<Node> queue = new Queue<Node>();
            queue.enqueue(root);
            while (!queue.isEmpty()) {
                Node x = queue.dequeue();
                if (x == null) continue;
                keys.enqueue(x.key);
                queue.enqueue(x.left);
                queue.enqueue(x.right);
            }
            return keys;
        }
    
        private boolean check() {
            if (!isBST())            StdOut.println("Not in symmetric order");
            if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
            if (!isRankConsistent()) StdOut.println("Ranks not consistent");
            return isBST() && isSizeConsistent() && isRankConsistent();
        }
    
        // does this binary tree satisfy symmetric order?
        // Note: this test also ensures that data structure is a binary tree since order is strict
        private boolean isBST() {
            return isBST(root, null, null);
        }
    
        // is the tree rooted at x a BST with all keys strictly between min and max
        // (if min or max is null, treat as empty constraint)
        // Credit: Bob Dondero's elegant solution
        private boolean isBST(Node x, Key min, Key max) {
            if (x == null) return true;
            if (min != null && x.key.compareTo(min) <= 0) return false;
            if (max != null && x.key.compareTo(max) >= 0) return false;
            return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
        }
    
        // are the size fields correct?
        private boolean isSizeConsistent() { return isSizeConsistent(root); }
        private boolean isSizeConsistent(Node x) {
            if (x == null) return true;
            if (x.size != size(x.left) + size(x.right) + 1) return false;
            return isSizeConsistent(x.left) && isSizeConsistent(x.right);
        }
    
        // check that ranks are consistent
        private boolean isRankConsistent() {
            for (int i = 0; i < size(); i++)
                if (i != rank(select(i))) return false;
            for (Key key : keys())
                if (key.compareTo(select(rank(key))) != 0) return false;
            return true;
        }
    
    
        public static void main(String[] args) {
            BST<String, Integer> st = new BST<String, Integer>();
            for (int i = 0; !StdIn.isEmpty(); i++) {
                String key = StdIn.readString();
                st.put(key, i);
            }
    
            for (String s : st.levelOrder())
                StdOut.println(s + " " + st.get(s));
    
            StdOut.println();
    
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
        }
    }

    四.红黑树

    package sort;
    
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdIn;
    import edu.princeton.cs.algs4.StdOut;
    
    import java.util.NoSuchElementException;
    
    public class RedBlackBST<Key extends Comparable<Key>, Value> {
    
        private static final boolean RED   = true;
        private static final boolean BLACK = false;
    
        private Node root;     // root of the BST
    
        private class Node {
            private Key key;           // key
            private Value val;         // associated data
            private Node left, right;  // links to left and right subtrees
            private boolean color;     // color of parent link
            private int size;          // subtree count
    
            public Node(Key key, Value val, boolean color, int size) {
                this.key = key;
                this.val = val;
                this.color = color;
                this.size = size;
            }
        }
    
        public RedBlackBST() {
        }
    
        /***************************************************************************
         *  Node helper methods.
         ***************************************************************************/
        // is node x red; false if x is null ?
        private boolean isRed(Node x) {
            if (x == null) return false;
            return x.color == RED;
        }
    
        private int size(Node x) {
            if (x == null) return 0;
            return x.size;
        }
    
    
        /**
         * Returns the number of key-value pairs in this symbol table.
         * @return the number of key-value pairs in this symbol table
         */
        public int size() {
            return size(root);
        }
    
        public boolean isEmpty() {
            return root == null;
        }
    
    
        /***************************************************************************
         *  Standard BST search.
         ***************************************************************************/
    
        /**
         * Returns the value associated with the given key.
         * @param key the key
         * @return the value associated with the given key if the key is in the symbol table
         *     and {@code null} if the key is not in the symbol table
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public Value get(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to get() is null");
            return get(root, key);
        }
    
        // value associated with the given key in subtree rooted at x; null if no such key
        private Value get(Node x, Key key) {
            while (x != null) {
                int cmp = key.compareTo(x.key);
                if      (cmp < 0) x = x.left;
                else if (cmp > 0) x = x.right;
                else              return x.val;
            }
            return null;
        }
    
        /**
         * Does this symbol table contain the given key?
         * @param key the key
         * @return {@code true} if this symbol table contains {@code key} and
         *     {@code false} otherwise
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public boolean contains(Key key) {
            return get(key) != null;
        }
    
        /***************************************************************************
         *  Red-black tree insertion.
         ***************************************************************************/
    
        /**
         * Inserts the specified key-value pair into the symbol table, overwriting the old
         * value with the new value if the symbol table already contains the specified key.
         * Deletes the specified key (and its associated value) from this symbol table
         * if the specified value is {@code null}.
         *
         * @param key the key
         * @param val the value
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public void put(Key key, Value val) {
            if (key == null) throw new IllegalArgumentException("first argument to put() is null");
            if (val == null) {
                delete(key);
                return;
            }
    
            root = put(root, key, val);
            root.color = BLACK;
            // assert check();
        }
    
        // insert the key-value pair in the subtree rooted at h
        private Node put(Node h, Key key, Value val) {
            if (h == null) return new Node(key, val, RED, 1);
    
            int cmp = key.compareTo(h.key);
            if      (cmp < 0) h.left  = put(h.left,  key, val);
            else if (cmp > 0) h.right = put(h.right, key, val);
            else              h.val   = val;
    
            // fix-up any right-leaning links
            if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
            if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
            if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
            h.size = size(h.left) + size(h.right) + 1;
    
            return h;
        }
    
        /***************************************************************************
         *  Red-black tree deletion.
         ***************************************************************************/
    
        /**
         * Removes the smallest key and associated value from the symbol table.
         * @throws NoSuchElementException if the symbol table is empty
         */
        public void deleteMin() {
            if (isEmpty()) throw new NoSuchElementException("BST underflow");
    
            // if both children of root are black, set root to red
            if (!isRed(root.left) && !isRed(root.right))
                root.color = RED;
    
            root = deleteMin(root);
            if (!isEmpty()) root.color = BLACK;
            // assert check();
        }
    
        // delete the key-value pair with the minimum key rooted at h
        private Node deleteMin(Node h) {
            if (h.left == null)
                return null;
    
            if (!isRed(h.left) && !isRed(h.left.left))
                h = moveRedLeft(h);
    
            h.left = deleteMin(h.left);
            return balance(h);
        }
    
    
        /**
         * Removes the largest key and associated value from the symbol table.
         * @throws NoSuchElementException if the symbol table is empty
         */
        public void deleteMax() {
            if (isEmpty()) throw new NoSuchElementException("BST underflow");
    
            // if both children of root are black, set root to red
            if (!isRed(root.left) && !isRed(root.right))
                root.color = RED;
    
            root = deleteMax(root);
            if (!isEmpty()) root.color = BLACK;
            // assert check();
        }
    
        // delete the key-value pair with the maximum key rooted at h
        private Node deleteMax(Node h) {
            if (isRed(h.left))
                h = rotateRight(h);
    
            if (h.right == null)
                return null;
    
            if (!isRed(h.right) && !isRed(h.right.left))
                h = moveRedRight(h);
    
            h.right = deleteMax(h.right);
    
            return balance(h);
        }
    
        /**
         * Removes the specified key and its associated value from this symbol table
         * (if the key is in this symbol table).
         *
         * @param  key the key
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public void delete(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to delete() is null");
            if (!contains(key)) return;
    
            // if both children of root are black, set root to red
            if (!isRed(root.left) && !isRed(root.right))
                root.color = RED;
    
            root = delete(root, key);
            if (!isEmpty()) root.color = BLACK;
            // assert check();
        }
    
        // delete the key-value pair with the given key rooted at h
        private Node delete(Node h, Key key) {
            // assert get(h, key) != null;
    
            if (key.compareTo(h.key) < 0)  {
                if (!isRed(h.left) && !isRed(h.left.left))
                    h = moveRedLeft(h);
                h.left = delete(h.left, key);
            }
            else {
                if (isRed(h.left))
                    h = rotateRight(h);
                if (key.compareTo(h.key) == 0 && (h.right == null))
                    return null;
                if (!isRed(h.right) && !isRed(h.right.left))
                    h = moveRedRight(h);
                if (key.compareTo(h.key) == 0) {
                    Node x = min(h.right);
                    h.key = x.key;
                    h.val = x.val;
                    // h.val = get(h.right, min(h.right).key);
                    // h.key = min(h.right).key;
                    h.right = deleteMin(h.right);
                }
                else h.right = delete(h.right, key);
            }
            return balance(h);
        }
    
        /***************************************************************************
         *  Red-black tree helper functions.
         ***************************************************************************/
    
        // make a left-leaning link lean to the right
        private Node rotateRight(Node h) {
            // assert (h != null) && isRed(h.left);
            Node x = h.left;
            h.left = x.right;
            x.right = h;
            x.color = x.right.color;
            x.right.color = RED;
            x.size = h.size;
            h.size = size(h.left) + size(h.right) + 1;
            return x;
        }
    
        // make a right-leaning link lean to the left
        private Node rotateLeft(Node h) {
            // assert (h != null) && isRed(h.right);
            Node x = h.right;
            h.right = x.left;
            x.left = h;
            x.color = x.left.color;
            x.left.color = RED;
            x.size = h.size;
            h.size = size(h.left) + size(h.right) + 1;
            return x;
        }
    
        // flip the colors of a node and its two children
        private void flipColors(Node h) {
            // h must have opposite color of its two children
            // assert (h != null) && (h.left != null) && (h.right != null);
            // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))
            //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));
            h.color = !h.color;
            h.left.color = !h.left.color;
            h.right.color = !h.right.color;
        }
    
        // Assuming that h is red and both h.left and h.left.left
        // are black, make h.left or one of its children red.
        private Node moveRedLeft(Node h) {
            // assert (h != null);
            // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
    
            flipColors(h);
            if (isRed(h.right.left)) {
                h.right = rotateRight(h.right);
                h = rotateLeft(h);
                flipColors(h);
            }
            return h;
        }
    
        // Assuming that h is red and both h.right and h.right.left
        // are black, make h.right or one of its children red.
        private Node moveRedRight(Node h) {
            // assert (h != null);
            // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
            flipColors(h);
            if (isRed(h.left.left)) {
                h = rotateRight(h);
                flipColors(h);
            }
            return h;
        }
    
        // restore red-black tree invariant
        private Node balance(Node h) {
            // assert (h != null);
    
            if (isRed(h.right))                      h = rotateLeft(h);
            if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
            if (isRed(h.left) && isRed(h.right))     flipColors(h);
    
            h.size = size(h.left) + size(h.right) + 1;
            return h;
        }
    
    
        /***************************************************************************
         *  Utility functions.
         ***************************************************************************/
    
        /**
         * Returns the height of the BST (for debugging).
         * @return the height of the BST (a 1-node tree has height 0)
         */
        public int height() {
            return height(root);
        }
        private int height(Node x) {
            if (x == null) return -1;
            return 1 + Math.max(height(x.left), height(x.right));
        }
    
        /***************************************************************************
         *  Ordered symbol table methods.
         ***************************************************************************/
    
        /**
         * Returns the smallest key in the symbol table.
         * @return the smallest key in the symbol table
         * @throws NoSuchElementException if the symbol table is empty
         */
        public Key min() {
            if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
            return min(root).key;
        }
    
        // the smallest key in subtree rooted at x; null if no such key
        private Node min(Node x) {
            // assert x != null;
            if (x.left == null) return x;
            else                return min(x.left);
        }
    
        /**
         * Returns the largest key in the symbol table.
         * @return the largest key in the symbol table
         * @throws NoSuchElementException if the symbol table is empty
         */
        public Key max() {
            if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
            return max(root).key;
        }
    
        // the largest key in the subtree rooted at x; null if no such key
        private Node max(Node x) {
            // assert x != null;
            if (x.right == null) return x;
            else                 return max(x.right);
        }
    
    
        /**
         * Returns the largest key in the symbol table less than or equal to {@code key}.
         * @param key the key
         * @return the largest key in the symbol table less than or equal to {@code key}
         * @throws NoSuchElementException if there is no such key
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public Key floor(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to floor() is null");
            if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
            Node x = floor(root, key);
            if (x == null) throw new NoSuchElementException("argument to floor() is too small");
            else           return x.key;
        }
    
        // the largest key in the subtree rooted at x less than or equal to the given key
        private Node floor(Node x, Key key) {
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if (cmp == 0) return x;
            if (cmp < 0)  return floor(x.left, key);
            Node t = floor(x.right, key);
            if (t != null) return t;
            else           return x;
        }
    
        /**
         * Returns the smallest key in the symbol table greater than or equal to {@code key}.
         * @param key the key
         * @return the smallest key in the symbol table greater than or equal to {@code key}
         * @throws NoSuchElementException if there is no such key
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public Key ceiling(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
            if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
            Node x = ceiling(root, key);
            if (x == null) throw new NoSuchElementException("argument to ceiling() is too small");
            else           return x.key;
        }
    
        // the smallest key in the subtree rooted at x greater than or equal to the given key
        private Node ceiling(Node x, Key key) {
            if (x == null) return null;
            int cmp = key.compareTo(x.key);
            if (cmp == 0) return x;
            if (cmp > 0)  return ceiling(x.right, key);
            Node t = ceiling(x.left, key);
            if (t != null) return t;
            else           return x;
        }
    
        /**
         * Return the key in the symbol table whose rank is {@code k}.
         * This is the (k+1)st smallest key in the symbol table.
         *
         * @param  k the order statistic
         * @return the key in the symbol table of rank {@code k}
         * @throws IllegalArgumentException unless {@code k} is between 0 and
         *        <em>n</em>–1
         */
        public Key select(int k) {
            if (k < 0 || k >= size()) {
                throw new IllegalArgumentException("argument to select() is invalid: " + k);
            }
            Node x = select(root, k);
            return x.key;
        }
    
        // the key of rank k in the subtree rooted at x
        private Node select(Node x, int k) {
            // assert x != null;
            // assert k >= 0 && k < size(x);
            int t = size(x.left);
            if      (t > k) return select(x.left,  k);
            else if (t < k) return select(x.right, k-t-1);
            else            return x;
        }
    
        /**
         * Return the number of keys in the symbol table strictly less than {@code key}.
         * @param key the key
         * @return the number of keys in the symbol table strictly less than {@code key}
         * @throws IllegalArgumentException if {@code key} is {@code null}
         */
        public int rank(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to rank() is null");
            return rank(key, root);
        }
    
        // number of keys less than key in the subtree rooted at x
        private int rank(Key key, Node x) {
            if (x == null) return 0;
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) return rank(key, x.left);
            else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
            else              return size(x.left);
        }
    
        /***************************************************************************
         *  Range count and range search.
         ***************************************************************************/
    
        /**
         * Returns all keys in the symbol table as an {@code Iterable}.
         * To iterate over all of the keys in the symbol table named {@code st},
         * use the foreach notation: {@code for (Key key : st.keys())}.
         * @return all keys in the symbol table as an {@code Iterable}
         */
        public Iterable<Key> keys() {
            if (isEmpty()) return new Queue<Key>();
            return keys(min(), max());
        }
    
        /**
         * Returns all keys in the symbol table in the given range,
         * as an {@code Iterable}.
         *
         * @param  lo minimum endpoint
         * @param  hi maximum endpoint
         * @return all keys in the symbol table between {@code lo}
         *    (inclusive) and {@code hi} (inclusive) as an {@code Iterable}
         * @throws IllegalArgumentException if either {@code lo} or {@code hi}
         *    is {@code null}
         */
        public Iterable<Key> keys(Key lo, Key hi) {
            if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
            if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
    
            Queue<Key> queue = new Queue<Key>();
            // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
            keys(root, queue, lo, hi);
            return queue;
        }
    
        // add the keys between lo and hi in the subtree rooted at x
        // to the queue
        private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
            if (x == null) return;
            int cmplo = lo.compareTo(x.key);
            int cmphi = hi.compareTo(x.key);
            if (cmplo < 0) keys(x.left, queue, lo, hi);
            if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
            if (cmphi > 0) keys(x.right, queue, lo, hi);
        }
    
        /**
         * Returns the number of keys in the symbol table in the given range.
         *
         * @param  lo minimum endpoint
         * @param  hi maximum endpoint
         * @return the number of keys in the symbol table between {@code lo}
         *    (inclusive) and {@code hi} (inclusive)
         * @throws IllegalArgumentException if either {@code lo} or {@code hi}
         *    is {@code null}
         */
        public int size(Key lo, Key hi) {
            if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
            if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
    
            if (lo.compareTo(hi) > 0) return 0;
            if (contains(hi)) return rank(hi) - rank(lo) + 1;
            else              return rank(hi) - rank(lo);
        }
    
    
        /***************************************************************************
         *  Check integrity of red-black tree data structure.
         ***************************************************************************/
        private boolean check() {
            if (!isBST())            StdOut.println("Not in symmetric order");
            if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
            if (!isRankConsistent()) StdOut.println("Ranks not consistent");
            if (!is23())             StdOut.println("Not a 2-3 tree");
            if (!isBalanced())       StdOut.println("Not balanced");
            return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
        }
    
        // does this binary tree satisfy symmetric order?
        // Note: this test also ensures that data structure is a binary tree since order is strict
        private boolean isBST() {
            return isBST(root, null, null);
        }
    
        // is the tree rooted at x a BST with all keys strictly between min and max
        // (if min or max is null, treat as empty constraint)
        // Credit: Bob Dondero's elegant solution
        private boolean isBST(Node x, Key min, Key max) {
            if (x == null) return true;
            if (min != null && x.key.compareTo(min) <= 0) return false;
            if (max != null && x.key.compareTo(max) >= 0) return false;
            return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
        }
    
        // are the size fields correct?
        private boolean isSizeConsistent() { return isSizeConsistent(root); }
        private boolean isSizeConsistent(Node x) {
            if (x == null) return true;
            if (x.size != size(x.left) + size(x.right) + 1) return false;
            return isSizeConsistent(x.left) && isSizeConsistent(x.right);
        }
    
        // check that ranks are consistent
        private boolean isRankConsistent() {
            for (int i = 0; i < size(); i++)
                if (i != rank(select(i))) return false;
            for (Key key : keys())
                if (key.compareTo(select(rank(key))) != 0) return false;
            return true;
        }
    
        // Does the tree have no red right links, and at most one (left)
        // red links in a row on any path?
        private boolean is23() { return is23(root); }
        private boolean is23(Node x) {
            if (x == null) return true;
            if (isRed(x.right)) return false;
            if (x != root && isRed(x) && isRed(x.left))
                return false;
            return is23(x.left) && is23(x.right);
        }
    
        // do all paths from root to leaf have same number of black edges?
        private boolean isBalanced() {
            int black = 0;     // number of black links on path from root to min
            Node x = root;
            while (x != null) {
                if (!isRed(x)) black++;
                x = x.left;
            }
            return isBalanced(root, black);
        }
    
        // does every path from the root to a leaf have the given number of black links?
        private boolean isBalanced(Node x, int black) {
            if (x == null) return black == 0;
            if (!isRed(x)) black--;
            return isBalanced(x.left, black) && isBalanced(x.right, black);
        }
    
        public static void main(String[] args) {
            RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();
            for (int i = 0; !StdIn.isEmpty(); i++) {
                String key = StdIn.readString();
                st.put(key, i);
            }
            StdOut.println();
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
            StdOut.println();
        }
    }

    五.散列表

    1.基于拉链法的散列表

    package search;
    
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdIn;
    import edu.princeton.cs.algs4.StdOut;
    
    public class SeparateChainingHashST<Key, Value> {
        private static final int INIT_CAPACITY = 4;
    
        private int n;                                // number of key-value pairs
        private int m;                                // hash table size
        private SequentialSearchST<Key, Value>[] st;  // array of linked-list symbol tables
    
        public SeparateChainingHashST() {
            this(INIT_CAPACITY);
        }
    
        public SeparateChainingHashST(int m) {
            this.m = m;
            st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[m];
            for (int i = 0; i < m; i++)
                st[i] = new SequentialSearchST<Key, Value>();
        }
    
        private void resize(int chains) {
            SeparateChainingHashST<Key, Value> temp = new SeparateChainingHashST<Key, Value>(chains);
            for (int i = 0; i < m; i++) {
                for (Key key : st[i].keys()) {
                    temp.put(key, st[i].get(key));
                }
            }
            this.m  = temp.m;
            this.n  = temp.n;
            this.st = temp.st;
        }
    
        private int hash(Key key) {
            return (key.hashCode() & 0x7fffffff) % m;
        }
    
        public int size() {
            return n;
        }
    
        public boolean isEmpty() {
            return size() == 0;
        }
    
        public boolean contains(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to contains() is null");
            return get(key) != null;
        }
    
        public Value get(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to get() is null");
            int i = hash(key);
            return st[i].get(key);
        }
    
        public void put(Key key, Value val) {
            if (key == null) throw new IllegalArgumentException("first argument to put() is null");
            if (val == null) {
                delete(key);
                return;
            }
    
            // double table size if average length of list >= 10
            if (n >= 10*m) resize(2*m);
    
            int i = hash(key);
            if (!st[i].contains(key)) n++;
            st[i].put(key, val);
        }
    
        public void delete(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to delete() is null");
    
            int i = hash(key);
            if (st[i].contains(key)) n--;
            st[i].delete(key);
    
            // halve table size if average length of list <= 2
            if (m > INIT_CAPACITY && n <= 2*m) resize(m/2);
        }
    
        public Iterable<Key> keys() {
            Queue<Key> queue = new Queue<Key>();
            for (int i = 0; i < m; i++) {
                for (Key key : st[i].keys())
                    queue.enqueue(key);
            }
            return queue;
        }
    
        public static void main(String[] args) {
            SeparateChainingHashST<String, Integer> st = new SeparateChainingHashST<String, Integer>();
            for (int i = 0; !StdIn.isEmpty(); i++) {
                String key = StdIn.readString();
                st.put(key, i);
            }
    
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
    
        }
    
    }

    2.基于线性探测法的散列表

    package search;
    
    import edu.princeton.cs.algs4.Queue;
    import edu.princeton.cs.algs4.StdIn;
    import edu.princeton.cs.algs4.StdOut;
    
    public class LinearProbingHashST<Key, Value> {
        private static final int INIT_CAPACITY = 4;
    
        private int n;           // number of key-value pairs in the symbol table
        private int m;           // size of linear probing table
        private Key[] keys;      // the keys
        private Value[] vals;    // the values
    
        public LinearProbingHashST() {
            this(INIT_CAPACITY);
        }
    
        public LinearProbingHashST(int capacity) {
            m = capacity;
            n = 0;
            keys = (Key[])   new Object[m];
            vals = (Value[]) new Object[m];
        }
    
        public int size() {
            return n;
        }
    
        public boolean isEmpty() {
            return size() == 0;
        }
    
        public boolean contains(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to contains() is null");
            return get(key) != null;
        }
    
        private int hash(Key key) {
            return (key.hashCode() & 0x7fffffff) % m;
        }
    
        private void resize(int capacity) {
            LinearProbingHashST<Key, Value> temp = new LinearProbingHashST<Key, Value>(capacity);
            for (int i = 0; i < m; i++) {
                if (keys[i] != null) {
                    temp.put(keys[i], vals[i]);
                }
            }
            keys = temp.keys;
            vals = temp.vals;
            m    = temp.m;
        }
    
        public void put(Key key, Value val) {
            if (key == null) throw new IllegalArgumentException("first argument to put() is null");
    
            if (val == null) {
                delete(key);
                return;
            }
    
            // double table size if 50% full
            if (n >= m/2) resize(2*m);
    
            int i;
            for (i = hash(key); keys[i] != null; i = (i + 1) % m) {
                if (keys[i].equals(key)) {
                    vals[i] = val;
                    return;
                }
            }
            keys[i] = key;
            vals[i] = val;
            n++;
        }
    
        public Value get(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to get() is null");
            for (int i = hash(key); keys[i] != null; i = (i + 1) % m)
                if (keys[i].equals(key))
                    return vals[i];
            return null;
        }
    
        public void delete(Key key) {
            if (key == null) throw new IllegalArgumentException("argument to delete() is null");
            if (!contains(key)) return;
    
            // find position i of key
            int i = hash(key);
            while (!key.equals(keys[i])) {
                i = (i + 1) % m;
            }
    
            // delete key and associated value
            keys[i] = null;
            vals[i] = null;
    
            // rehash all keys in same cluster
            i = (i + 1) % m;
            while (keys[i] != null) {
                // delete keys[i] an vals[i] and reinsert
                Key   keyToRehash = keys[i];
                Value valToRehash = vals[i];
                keys[i] = null;
                vals[i] = null;
                n--;
                put(keyToRehash, valToRehash);
                i = (i + 1) % m;
            }
    
            n--;
    
            // halves size of array if it's 12.5% full or less
            if (n > 0 && n <= m/8) resize(m/2);
    
            assert check();
        }
    
        public Iterable<Key> keys() {
            Queue<Key> queue = new Queue<Key>();
            for (int i = 0; i < m; i++)
                if (keys[i] != null) queue.enqueue(keys[i]);
            return queue;
        }
    
        private boolean check() {
    
            // check that hash table is at most 50% full
            if (m < 2*n) {
                System.err.println("Hash table size m = " + m + "; array size n = " + n);
                return false;
            }
    
            // check that each key in table can be found by get()
            for (int i = 0; i < m; i++) {
                if (keys[i] == null) continue;
                else if (get(keys[i]) != vals[i]) {
                    System.err.println("get[" + keys[i] + "] = " + get(keys[i]) + "; vals[i] = " + vals[i]);
                    return false;
                }
            }
            return true;
        }
    
        public static void main(String[] args) {
            LinearProbingHashST<String, Integer> st = new LinearProbingHashST<String, Integer>();
            for (int i = 0; !StdIn.isEmpty(); i++) {
                String key = StdIn.readString();
                st.put(key, i);
            }
    
            // print keys
            for (String s : st.keys())
                StdOut.println(s + " " + st.get(s));
        }
    }
  • 相关阅读:
    B2C电子商务网站的突围——再议什么是B2C网站,互联网营销 狼人:
    迅雷网站设计浅析,互联网营销 狼人:
    构建一个高性能的网页抓取器,互联网营销 狼人:
    Velocity China 2010大会回顾,互联网营销 狼人:
    尝试使用GraphicsMagick的缩略图功能,互联网营销 狼人:
    美妙的模电2013/4/18
    找素数 素数就是不能再进行等分的整数。比如:7,11。而9不是素数,因为它可以平分为3等份。
    WMI技术介绍和应用——查询硬件信息
    码农如何快速打造一个有设计感的网站 How to Make Your Site Look HalfDecent in Half an Hour
    poj321101背包
  • 原文地址:https://www.cnblogs.com/wuwuyong/p/12290983.html
Copyright © 2011-2022 走看看