zoukankan      html  css  js  c++  java
  • HMM算法

    HMM的应用

    HMM是生成模型

     

    • 词性标注:给定一个词的序列(也就是句子),找出最可能的词性序列(标签是词性)。如ansj分词和ICTCLAS分词等。

    • 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)

    • 命名实体识别:给定一个词的序列,找出最可能的标签序列(内外符号:[内]表示词属于命名实体,[外]表示不属于)。如ICTCLAS实现的人名识别、翻译人名识别、地名识别都是用同一个Tagger实现的。

    HMM的三种问题:

    1)知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道每次掷出来的都是哪种骰子(隐含状态链)。 

    2)还是知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道掷出这个结果的概率。 

    3)知道骰子有几种(隐含状态数量),不知道每种骰子是什么(转换概率),观测到很多次掷骰子的结果(可见状态链),我想反推出每种骰子是什么(转换概率) 

  • 相关阅读:
    v-cloak
    MVVM
    初识ajax
    装瓶学习法
    回调函数(call back)
    如何让学习变得纯粹?
    异步
    grep用法
    Shell中的&&与||的区别
    shell中使用>/dev/null 2>&1 丢弃信息
  • 原文地址:https://www.cnblogs.com/wuxiangli/p/7193394.html
Copyright © 2011-2022 走看看