题目连接:https://www.patest.cn/contests/pat-a-practise/1053原题如下:
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, ... k, and Ak+1 > Bk+1.
Sample Input:20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
这道是我觉得是一道很典型的DFS题。我自己递归水平不行,参考了陈小旭的解法。值得多次回看!!!
1 #include<stdio.h> 2 #include<vector> 3 #include<algorithm> 4 #define MAXN 105 5 using namespace std; 6 7 typedef struct Node 8 { 9 int weight; 10 vector<int>son; 11 }node; 12 node bur[MAXN]; 13 int S; 14 vector<int>ans; 15 vector<vector<int> >ans_V; 16 17 void DFS(int p,int sum) 18 { 19 sum+=bur[p].weight; 20 ans.push_back(bur[p].weight); 21 if (sum<S) 22 { 23 for (int i=0;i<bur[p].son.size();i++)DFS(bur[p].son[i],sum); 24 ans.pop_back(); //没有孩子,但仍然小于S 25 return ; 26 } 27 else if (sum>S) 28 { 29 ans.pop_back(); 30 return ; 31 } 32 else if (sum==S) 33 { 34 if (bur[p].son.size()==0) 35 { 36 ans_V.push_back(ans); 37 ans.pop_back(); 38 } 39 else 40 { 41 ans.pop_back(); 42 } 43 return ; 44 } 45 } 46 47 int cmp(vector<int>a,vector<int>b) 48 { 49 int len1,len2; 50 len1=a.size(); 51 len2=b.size(); 52 53 int i; 54 for (i=0;i<len1 && i<len2;i++) 55 { 56 if (a[i]==b[i])continue; 57 else return (a[i]>b[i]); 58 } 59 return (len1>len2); 60 } 61 62 int main() 63 { 64 int N,M; 65 scanf("%d %d %d",&N,&M,&S); 66 for (int i=0;i<N;i++)scanf("%d",&bur[i].weight); 67 int p,k,w; 68 while(M--) 69 { 70 scanf("%d %d",&p,&k); 71 while(k--) 72 { 73 scanf("%d",&w); 74 bur[p].son.push_back(w); 75 } 76 } 77 DFS(0,0); 78 sort(ans_V.begin(),ans_V.end(),cmp); 79 for (int i=0;i<ans_V.size();i++) 80 { 81 for (int j=0;j<ans_V[i].size();j++) 82 { 83 if (j==0)printf("%d",ans_V[i][j]); 84 else printf(" %d",ans_V[i][j]); 85 } 86 printf(" "); 87 } 88 return 0; 89 }