zoukankan      html  css  js  c++  java
  • 第4章 最基础的分类算法-k近邻算法

    思想极度简单

    应用数学知识少

    效果好(缺点?)

    可以解释机器学习算法使用过程中的很多细节问题

    更完整的刻画机器学习应用的流程

     

     

    distances = []
    for x_train in X_train:
        d=sqrt(np.sum((x_train-x)**2))
        distances.append(d)
    View Code
    distances=[sqrt(np.sum((x_train-x)**2)) for x_train in X_train]

     可以说kNN是一个不需要训练过程的算法

     K近邻算法是非常特殊的,可以被认为是没有模型的算法

    为了和其他算法统一,可以认为训练数据集就是模型本身

    kNN:
    from sklearn.neighbors import KNeighborsClassifier
    kNN_classifier=KNeighborsClassifier(n_neighbors=6)
    kNN_classifier.fit(X_train,y_train)
    kNN_classifier.predict(x)

    有关K近邻算法

    解决分类问题

    天然可以解决多分类问题

    思想简单,效果强大

    使用k近邻算法解决回归问题

    KNeighborsRegressor

    kNN:
    from sklearn.neighbors import KNeighborsClassifier
    kNN_classifier=KNeighborsClassifier(n_neighbors=6)
    kNN_classifier.fit(X_train,y_train)
    kNN_classifier.predict(x)

     

     

     

     

     

    须考虑距离的权重!通常是将距离的倒数作为权重

     

     

     

     

     

    相当于因为距离又获得了一个超参数

     

    寻找最好的k,调参
    best_score = 0.0
    besk_k = -1
    for k in range(1,11):
        knn_clf = KNeighborsClassifier(n_neighbors=k)
        knn_clf.fit(X_train,y_train)
        score = knn_clf.score(X_test,y_test)
        if score>best_score:
            best_k=k
            best_score=score
            
    print('best_k=',best_k)
    print('best_score=',best_score)
    
    考虑距离?
    best_method = ''
    best_score = 0.0
    besk_k = -1
    for method in ['uniform','distance']:
        for k in range(1,11):
            knn_clf = KNeighborsClassifier(n_neighbors=k,weights=method)
            knn_clf.fit(X_train,y_train)
            score = knn_clf.score(X_test,y_test)
            if score>best_score:
                best_k=k
                best_score=score
                best_method = method
    print('best_k=',best_k)
    print('best_score=',best_score)
    print('best_method',best_method)
    
    搜索明可夫斯基距离相应的p
    %%time
    best_p = -1
    best_score = 0.0
    besk_k = -1
    for k in range(1,11):
        for p in range(1,6):
            knn_clf = KNeighborsClassifier(n_neighbors=k,weights='distance',p = p)
            knn_clf.fit(X_train,y_train)
            score = knn_clf.score(X_test,y_test)
            if score>best_score:
                best_k=k
                best_score=score
                best_p=p
    print('best_k=',best_k)
    print('best_score=',best_score)
    print('best_p=',best_p)
    View Code

     

    缺点2:高度数据相关

    缺点3:预测的结果不具有可解释性

    缺点4:维数灾难

    随着维度的增加,‘看似相近’的的两个点之间的距离越来越大

    解决方法:降维(PCA)

    # coding=utf-8
    import numpy as np
    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import accuracy_score  # 分类的准确度
    from sklearn.model_selection import GridSearchCV
    
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target
    X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=666)
    standardScaler = StandardScaler()  # 创建实例
    standardScaler.fit(X_train)
    # standardScaler.mean_
    # standardScaler.scale_
    X_train = standardScaler.transform(X_train)  # 使用transform方法进行归一化
    X_test_standard = standardScaler.transform(X_test)
    
    # 寻找最好的参数K
    # param_grid = [
    #     {
    #         'weights': ['uniform'],
    #         'n_neighbors': [i for i in range(1, 11)]
    #     },
    #     {
    #         'weights': ['distance'],
    #         'n_neighbors': [i for i in range(1, 11)],
    #         'p': [i for i in range(1, 6)]
    #     }
    # ]
    # knn_clf = KNeighborsClassifier()
    # grid_search = GridSearchCV(knn_clf, param_grid)
    # grid_search.fit(X_train, y_train)
    # print(grid_search.best_estimator_, grid_search.best_params_, grid_search.best_score_)
    # knn_clf.predict(X_test)
    # knn_clf.score(X_test, y_test)
    
    
    knn_clf = KNeighborsClassifier(n_neighbors=3)
    knn_clf.fit(X_train, y_train)  # X_train已经进行了归一化
    print(knn_clf.score(X_test_standard, y_test))
    # 或者
    y_predict = knn_clf.predict(X_test_standard)
    print(accuracy_score(y_test, y_predict))
    knn_clf.score(X_test_standard, y_test)
    个人整个流程代码
  • 相关阅读:
    php基础
    MYSQL 常用函数
    MYSQL 练习题
    MYSQL 查询
    MYSQL:增删改
    隐藏导航
    分层导航
    图片轮播!
    你帅不帅?
    PHP 流程
  • 原文地址:https://www.cnblogs.com/wuxiping2019/p/12056562.html
Copyright © 2011-2022 走看看