思想极度简单
应用数学知识少
效果好(缺点?)
可以解释机器学习算法使用过程中的很多细节问题
更完整的刻画机器学习应用的流程
distances = [] for x_train in X_train: d=sqrt(np.sum((x_train-x)**2)) distances.append(d)
distances=[sqrt(np.sum((x_train-x)**2)) for x_train in X_train]
可以说kNN是一个不需要训练过程的算法
K近邻算法是非常特殊的,可以被认为是没有模型的算法
为了和其他算法统一,可以认为训练数据集就是模型本身
kNN: from sklearn.neighbors import KNeighborsClassifier kNN_classifier=KNeighborsClassifier(n_neighbors=6) kNN_classifier.fit(X_train,y_train) kNN_classifier.predict(x)
有关K近邻算法
解决分类问题
天然可以解决多分类问题
思想简单,效果强大
使用k近邻算法解决回归问题
KNeighborsRegressor
kNN: from sklearn.neighbors import KNeighborsClassifier kNN_classifier=KNeighborsClassifier(n_neighbors=6) kNN_classifier.fit(X_train,y_train) kNN_classifier.predict(x)
须考虑距离的权重!通常是将距离的倒数作为权重
相当于因为距离又获得了一个超参数
寻找最好的k,调参 best_score = 0.0 besk_k = -1 for k in range(1,11): knn_clf = KNeighborsClassifier(n_neighbors=k) knn_clf.fit(X_train,y_train) score = knn_clf.score(X_test,y_test) if score>best_score: best_k=k best_score=score print('best_k=',best_k) print('best_score=',best_score) 考虑距离? best_method = '' best_score = 0.0 besk_k = -1 for method in ['uniform','distance']: for k in range(1,11): knn_clf = KNeighborsClassifier(n_neighbors=k,weights=method) knn_clf.fit(X_train,y_train) score = knn_clf.score(X_test,y_test) if score>best_score: best_k=k best_score=score best_method = method print('best_k=',best_k) print('best_score=',best_score) print('best_method',best_method) 搜索明可夫斯基距离相应的p %%time best_p = -1 best_score = 0.0 besk_k = -1 for k in range(1,11): for p in range(1,6): knn_clf = KNeighborsClassifier(n_neighbors=k,weights='distance',p = p) knn_clf.fit(X_train,y_train) score = knn_clf.score(X_test,y_test) if score>best_score: best_k=k best_score=score best_p=p print('best_k=',best_k) print('best_score=',best_score) print('best_p=',best_p)
缺点2:高度数据相关
缺点3:预测的结果不具有可解释性
缺点4:维数灾难
随着维度的增加,‘看似相近’的的两个点之间的距离越来越大
解决方法:降维(PCA)
# coding=utf-8 import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # 分类的准确度 from sklearn.model_selection import GridSearchCV iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=666) standardScaler = StandardScaler() # 创建实例 standardScaler.fit(X_train) # standardScaler.mean_ # standardScaler.scale_ X_train = standardScaler.transform(X_train) # 使用transform方法进行归一化 X_test_standard = standardScaler.transform(X_test) # 寻找最好的参数K # param_grid = [ # { # 'weights': ['uniform'], # 'n_neighbors': [i for i in range(1, 11)] # }, # { # 'weights': ['distance'], # 'n_neighbors': [i for i in range(1, 11)], # 'p': [i for i in range(1, 6)] # } # ] # knn_clf = KNeighborsClassifier() # grid_search = GridSearchCV(knn_clf, param_grid) # grid_search.fit(X_train, y_train) # print(grid_search.best_estimator_, grid_search.best_params_, grid_search.best_score_) # knn_clf.predict(X_test) # knn_clf.score(X_test, y_test) knn_clf = KNeighborsClassifier(n_neighbors=3) knn_clf.fit(X_train, y_train) # X_train已经进行了归一化 print(knn_clf.score(X_test_standard, y_test)) # 或者 y_predict = knn_clf.predict(X_test_standard) print(accuracy_score(y_test, y_predict)) knn_clf.score(X_test_standard, y_test)