storm的开发环境搭建比hadoop(参见前文http://www.cnblogs.com/wuxun1997/p/6849878.html)简单,无需安装插件,只需新建一个java项目并配置好lib包引用即可。本地跑也无需先启动storm,直接Run As->Java Application完事。下面细看:
1、新建项目:在eclipse中点File->New->选Project->Java Project->next,输入自己想要的项目名,我这里写storm,点Finish;
2、引入jar包:右击storm项目src目录->Build Path,选Config Build Path->Libraries->Add Library,选User Library,点next,点击User Libraries->点New,输入引用lib包名,这里写storm->点Add External JARs,选storm安装目录lib包所在路径:D:apache-storm-1.1.0lib,为了使用中文分词还要引用到IKAnalyzer2012_FF.jar,该包下载地址同样参见上面链接->一路确定后就可以开始写代码了;
3、代码结构如下:
src
|---com.wulinfeng.storm.wordsplit.WordSplit.java
|---IKAnalyzer.cfg.xml
|---myext.dic
|---mystopword.dic
除了WordSplit.java要新写,其他3个文件无需修改,内容参见上面链接。
package com.wulinfeng.storm.wordsplit; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.StringReader; import java.util.HashMap; import java.util.HashSet; import java.util.Map; import java.util.Set; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.storm.StormSubmitter; import org.apache.storm.spout.SpoutOutputCollector; import org.apache.storm.task.OutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.BasicOutputCollector; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.TopologyBuilder; import org.apache.storm.topology.base.BaseBasicBolt; import org.apache.storm.topology.base.BaseRichBolt; import org.apache.storm.topology.base.BaseRichSpout; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Tuple; import org.apache.storm.tuple.Values; import org.wltea.analyzer.core.IKSegmenter; import org.wltea.analyzer.core.Lexeme; public class WordSplit { /** * 发射数据源 * * @author Administrator * */ public static class WordReaderSpout extends BaseRichSpout { SpoutOutputCollector _collector; InputStreamReader isr; boolean isEnd = false; @Override public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { String inputFile = "D:/input/people.txt"; try { isr = new InputStreamReader(new FileInputStream(inputFile)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } _collector = collector; } @Override public void nextTuple() { // 读取文件一次就无需再读了 if (isEnd) { System.out.println("*******Spout is over, no neccessary to emit.*********"); return; } // 读本地文件,一行发射一次 String line = null; try (BufferedReader br = new BufferedReader(isr)) { while ((line = br.readLine()) != null) { System.out.printf("line : %s", line); _collector.emit(new Values(line)); } } catch (IOException e) { e.printStackTrace(); } finally { isEnd = true; // 文件读完了 } } @Override public void ack(Object id) { } @Override public void fail(Object id) { } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } } /** * 处理上面发射过来的数据源 * * @author Administrator * */ public static class SplitWordBolt extends BaseRichBolt { private OutputCollector outputCollector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.outputCollector = collector; } @Override public void execute(Tuple tuple) { String sentence = tuple.getString(0); // 一次处理一行 IKSegmenter ikSeg = new IKSegmenter(new StringReader(sentence), true); // 智能分词 try { for (Lexeme lexeme = ikSeg.next(); lexeme != null; lexeme = ikSeg.next()) { outputCollector.emit(new Values(lexeme.getLexemeText())); } } catch (IOException e) { e.printStackTrace(); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } } /** * 统计从上面取到的分词,关键人名统计后的放到result.txt * * @author Administrator * */ public static class WordCountBolt extends BaseBasicBolt { Map<String, Integer> counts = new HashMap<String, Integer>(); String out; Set<String> keyName = new HashSet<>(); @Override public void prepare(Map stormConf, TopologyContext context) { out = "D:/out/result.txt"; // 判断result文件是否已存在,是则先删掉,以待新建 File outFile = new File(out); if (outFile.exists()) { outFile.delete(); } // 读字典文件并放入一个set,以备参照set里的人名读取统计结果,写入result.txt文件 try (BufferedReader br = new BufferedReader( new InputStreamReader(WordSplit.class.getClassLoader().getResourceAsStream("myext.dic")))) { String peopleName = null; while ((peopleName = br.readLine()) != null) { keyName.add(peopleName); } } catch (IOException e) { e.printStackTrace(); } } @Override public void execute(Tuple tuple, BasicOutputCollector collector) { String word = tuple.getString(0); // 每次统计一个分词 Integer count = counts.get(word); if (count == null) count = 0; count++; counts.put(word, count); collector.emit(new Values(word, count)); } @Override public void cleanup() { // 最后时刻,输出关键人名的统计结果到result.txt文件 try (BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(out)))) { for (Map.Entry<String, Integer> keyWord : counts.entrySet()) { if (keyName.contains(keyWord.getKey())) { bw.write(keyWord.getKey() + " : " + keyWord.getValue() + " "); bw.flush(); } } } catch (IOException e) { e.printStackTrace(); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } } /** * 输出分词结果到本地文件,过程数据放在tmp文件 * * @author Administrator * */ public static class SaveOutput extends BaseRichBolt { String temp; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { temp = "D:/out/tmp" + System.currentTimeMillis(); // 判断tmp文件是否已存在,是则先删掉,以待新建 File tempFile = new File(temp); if (tempFile.exists()) { tempFile.delete(); } } @Override public void execute(Tuple input) { // 从上面获取分词的累计次数 String name = input.getStringByField("word"); Integer counts = input.getIntegerByField("count"); // 输出分词统计过程追加到tmp文件 try (BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(temp, true)))) { bw.write(name + " : " + counts + " "); bw.flush(); } catch (IOException e) { e.printStackTrace(); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { // TODO Auto-generated method stub } } public static void main(String[] args) throws Exception { TopologyBuilder builder = new TopologyBuilder(); // 新建一个拓扑 builder.setSpout("spout", new WordReaderSpout(), 1); // 设置数据源 // 读取spout里的数据,进行split处理 builder.setBolt("split", new SplitWordBolt(), 10).shuffleGrouping("spout"); // 读取split后的数据,进行count处理 builder.setBolt("count", new WordCountBolt(), 10).fieldsGrouping("split", new Fields("word")); // 保存计算结果 builder.setBolt("save", new SaveOutput(), 10).allGrouping("count"); Config conf = new Config(); conf.setDebug(true); conf.setMaxTaskParallelism(1); // 有参数则到集群跑,没有则在本地跑 if (args != null && args.length > 0) { conf.setNumWorkers(3); StormSubmitter.submitTopology(args[0], conf, builder.createTopology()); } else { LocalCluster cluster = new LocalCluster(); cluster.submitTopology("word-split", conf, builder.createTopology()); Thread.sleep(300000); // 5分钟后自动结束 cluster.shutdown(); } } }
上面的java文件直接右键选择Run As->Java Application就可以跑起来了,因为是流的形式,所以会跑得慢一些,这里设置5分钟自动结束。跑的时候可以看到D:out mpXXX.txt不断在刷数据,跑结束后可以去D:out esult.txt看那几个猪脚的出境率。跑集群的话需要先起zookeeper和storm,把上面代码和引用的lib包打个jar,到命令行里去执行storm jar,运行情况可以去localhost:8088上看。