zoukankan      html  css  js  c++  java
  • Select、Poll与Epoll比较

    (1)select
    select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作。
    select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点,事实上从现在看来,这也是它所剩不多的优点之一。
    select的一个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,不过可以通过修改宏定义甚至重新编译内核的方式提升这一限制。另外,select()所维护的存储大量文件描述符的数据结构,随着文件描述符数量的增大,其复制的开销也线性增长。同时,由于网络响应时间的延迟使得大量TCP连接处于非活跃状态,但调用select()会对所有socket进行一次线性扫描,所以这也浪费了一定的开销。
    (2)poll
    poll在1986年诞生于System V Release 3,它和select在本质上没有多大差别,但是poll没有最大文件描述符数量的限制。
    poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。另外,select()和poll()将就绪的文件描述符告诉进程后,如果进程没有对其进行IO操作,那么下次调用select()和poll()的时候将再次报告这些文件描述符,所以它们一般不会丢失就绪的消息,这种方式称为水平触发(Level Triggered)。(3)epoll
    直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。
    epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。
    epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。
    另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。


    Select

    select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:
    1 单个进程可监视的fd数量被限制
    2 需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大
    3 对socket进行扫描时是线性扫描

    Poll

    poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次无谓的遍历。
    它没有最大连接数的限制,原因是它是基于链表来存储的,但是同样有一个缺点:大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义。
    poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

    Epoll

    epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就需态,并且只会通知一次。
    在前面说到的复制问题上,epoll使用mmap减少复制开销。
    还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知

    注:水平触发(level-triggered):只要满足条件,就触发一个事件(只要有数据没有被获取,内核就不断通知你);边缘触发(edge-triggered)——每当状态变化时,触发一个事件。

    Select

    Poll

    Epoll

    支持最大连接数

    1024x86) or 2048x64

    无上限

    无上限

    IO效率

    每次调用进行线性遍历,时间复杂度为ON

    每次调用进行线性遍历,时间复杂度为ON

    使用事件通知方式,每当fd就绪,系统注册的回调函数就会被调用,将就绪fd放到rdllist里面,这样epoll_wait返回的时候我们就拿到了就绪的fd。时间发复杂度O1

    fd拷贝

    每次select都拷贝

    每次poll都拷贝

    调用epoll_ctl时拷贝进内核并由内核保存,之后每次epoll_wait不拷贝

    FD剧增后带来的IO效率问题

     select

     因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的线性下降性能问题

     poll

     同上

     epoll

     因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。

       

    消息传递方式

     select

     内核需要将消息传递到用户空间,都需要内核拷贝动作

     poll

     同上

     epoll

     epoll通过内核和用户空间共享一块内存来实现的


    使用:

    当同时需要保持很多的长连接,而且连接的开关很频繁时,就能够发挥epoll最大的优势了。这里与服务器模型其实已经有些交集了。
    同时需要保持很多的长连接,而且连接的开关很频繁,最高效的模型是非阻塞、异步IO模型。而且不要用select/poll,这两个API的有着O(N)的时间复杂度。
    在Linux用epoll,BSD用kqueue,Windows用IOCP,或者用Libevent封装的统一接口(对于不同平台Libevent实现时采用各个平台特有的API),这些平台特有的API时间复杂度为O(1)。 然而在非阻塞,异步I/O模型下的编程是非常痛苦的。由于I/O操作不再阻塞,报文的解析需要小心翼翼,并且需要亲自管理维护每个链接的状态。并且为了充分利用CPU,还应结合线程池,避免在轮询线程中处理业务逻辑。
    但这种模型的效率是极高的。以知名的http服务器nginx为例,可以轻松应付上千万的空连接+少量活动链接,每个连接连接仅需要几K的内核缓冲区,想要应付更多的空连接,只需简单的增加内存(数据来源为淘宝一位工程师的一次技术讲座,并未实测)。这使得DDoS攻击者的成本大大增加,这种模型攻击者只能将服务器的带宽全部占用,才能达到目的,而两方的投入是不成比例的。

    注:长连接——连接后始终不断开,然后进行报文发送和接受;短链接——每一次通讯都建立连接,通讯完成即断开连接,下次通讯再建立连接。


    linux提供了select、poll、epoll接口来实现IO复用,三者的原型如下所示:

    int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
    int poll(struct pollfd *fds, nfds_t nfds, int timeout);
    int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

    select、poll、epoll_wait参数及实现对比
    1. select的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。select的第二三四个参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件。所以每次调用select前都需要重新初始化fdset。

    timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。
    select对应于内核中的sys_select调用,sys_select首先将第二三四个参数指向的fd_set拷贝到内核,然后对每个被SET的描述符调用进行poll,并记录在临时结果中(fdset),如果有事件发生,select会将临时结果写到用户空间并返回;当轮询一遍后没有任何事件发生时,如果指定了超时时间,则select会睡眠到超时,睡眠结束后再进行一次轮询,并将临时结果写到用户空间,然后返回。
    select返回后,需要逐一检查关注的描述符是否被SET(事件是否发生)。

    2. poll与select不同,通过一个pollfd数组向内核传递需要关注的事件,故没有描述符个数的限制,pollfd中的events字段和revents分别用于标示关注的事件和发生的事件,故pollfd数组只需要被初始化一次。
    poll的实现机制与select类似,其对应内核中的sys_poll,只不过poll向内核传递pollfd数组,然后对pollfd中的每个描述符进行poll,相比处理fdset来说,poll效率更高。
    poll返回后,需要对pollfd中的每个元素检查其revents值,来得指事件是否发生。

    3. epoll通过epoll_create创建一个用于epoll轮询的描述符,通过epoll_ctl添加/修改/删除事件,通过epoll_wait检查事件,epoll_wait的第二个参数用于存放结果。
    epoll与select、poll不同,首先,其不用每次调用都向内核拷贝事件描述信息,在第一次调用后,事件信息就会与对应的epoll描述符关联起来。另外epoll不是通过轮询,而是通过在等待的描述符上注册回调函数,当事件发生时,回调函数负责把发生的事件存储在就绪事件链表中,最后写到用户空间。
    epoll返回后,该参数指向的缓冲区中即为发生的事件,对缓冲区中每个元素进行处理即可,而不需要像poll、select那样进行轮询检查。

  • 相关阅读:
    xpath取其中几个使用position
    pycharm2018.3.5 下载激活(windows平台)
    switch host 切换本地host
    leveldb 学习记录(四)Log文件
    bittorrent 学习(一) 种子文件分析与bitmap位图
    分布式协议学习笔记(三) Raft 选举自编写代码练习
    谷歌开源的一个BTREE实现 Go语言
    分布式协议学习笔记(二) 日志复制
    分布式协议学习笔记(一) Raft 选举
    利用redis制作消息队列
  • 原文地址:https://www.cnblogs.com/wuyida/p/6300914.html
Copyright © 2011-2022 走看看