zoukankan      html  css  js  c++  java
  • leetcode 155 Min Stack

    Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
    • push(x) – Push element x onto stack.
    • pop() – Removes the element on top of the stack.
    • top() – Get the top element.
    • getMin() – Retrieve the minimum element in the stack.

    解决方案:

    这里写图片描述
    可以看到STL的解决方案跟大多数的c语言解决方案还是有差距的,后序我找一找基于链表的整齐点的c语言实现

    The key idea is use a another stack to store the minimum value of the corresponding stack. Put differently, min[i] equals the minimum element where data[i] is the top of this sub-stack.

    We can use a full size of min where it’s size equals the data’s, but it’s not necessary.

    I have 2 main concerns about the algorithm:

    1
    We should pop the element in min IFF there’s match of data.top().

    2
    If we have multiple minima, for example [0, 1, 0] in data, then the min should be [0, 0].
    Otherwise, the the pop operation wouldn’t work properly.
    As a result, we should push the element if x <= min.top().

    class MinStack {
    public:
        void push(int x) {
            s.push(x);
            if (mins.empty() || x<=mins.top()) {
                mins.push(x);
            }
        }
    
        void pop() {
            int temp = s.top();
            s.pop();
            if (temp == mins.top()) {
                mins.pop();
            }
        }
    
        int top() {
            return s.top();
        }
    
        int getMin() {
            return mins.top();
        }
    
    private:
        stack<int> s;
        stack<int> mins;
    };
    

    STL list实现:

    class MinStack {
        private:
            list<int> s;
            int min;
    
    
        public:
    
            MinStack()
            {
                min=INT_MAX;
            }
    
            void push(int x) {
                if(x<min) min=x;
                s.push_back(x);
    
            }
    
            void pop() {
                if(s.back()==min)
                {
                    s.pop_back();
                    min=INT_MAX;
                    list<int>::iterator it=s.begin();
                    while(it!=s.end())
                    {
                        if(*it<min) min=*it;
                        it++;
                    }
                }else
                    s.pop_back();
            }
    
            int top() {
                return s.back();
            }
    
            int getMin() {
                return min;
            }
        };
    

    python解决方案:

    class MinStack:
    # @param x, an integer
    def __init__(self):
        # the stack it self
        self.A = []
        self.minS=[]
    # @return an integer
    def push(self, x):
        n=len(self.A)
        if n==0:
            self.minS.append(x)
        else:
            lastmin=self.minS[-1]
            if x<=lastmin:
                self.minS.append(x)
        self.A.append(x)
    # @return nothing
    def pop(self):
        if len(self.A)>0 and self.A.pop()==self.minS[-1]:
            self.minS.pop()
    # @return an integer
    def top(self):
        return self.A[-1]
    
    
    # @return an integer
    def getMin(self):
        return self.minS[-1]
    

    python解决方案2:

    
    class MinStack:
    
    def __init__(self):
        self.q = []
    
    # @param x, an integer
    # @return an integer
    def push(self, x):
        curMin = self.getMin()
        if curMin == None or x < curMin:
            curMin = x
        self.q.append((x, curMin));
    
    # @return nothing
    def pop(self):
        self.q.pop()
    
    
    # @return an integer
    def top(self):
        if len(self.q) == 0:
            return None
        else:
            return self.q[len(self.q) - 1][0]
    
    
    # @return an integer
    def getMin(self):
        if len(self.q) == 0:
            return None
        else:
            return self.q[len(self.q) - 1][1]
    
      asked Apr 14  in Min Stack  by  charles8135 (180 points)    
    
  • 相关阅读:
    堆和堆排序
    快速排序
    Sublime Text3汉化好的绿色免安装版使用和破解教程+下载链接
    复杂数据类型(signal)的解读-C语言基础
    C/C++命名规范-C语言基础
    fgets()函数的详解以及使用时需要注意的一些细节-C语言基础
    scanf()函数的详解以及使用时需要注意的一些细节-C语言基础
    getchar()函数的详解以及使用时需要注意的一些细节-C语言基础
    如何用算法把一个十进制数转为十六进制数-C语言基础
    杨辉三角形实现过程详解-C语言基础
  • 原文地址:https://www.cnblogs.com/wuyida/p/6301337.html
Copyright © 2011-2022 走看看