zoukankan      html  css  js  c++  java
  • 小白初理解树状数组

      ACM的在线测试里经常涉及到大量数据的的修改,求和等操作,这里介绍一种方法——树状数组。

      树状数组,是一个查询和修改复杂度都为log(n)的数据结构。主要用于查询任意两位之间的所有元素之和,但是每次只能修改一个元素的值;经过简单修改可以在log(n)的复杂度下进行范围修改,但是这时只能查询其中一个元素的值。可以用一张图来弄懂什么是数组数组。

     原数组A[n],树状数组C[n];

    如果n为奇数:Cn=An;

    如果n为偶数:Cn = A(n – 2^k + 1) + ... + An,k为n的二进制数末尾0的个数。

    可以用lowbit函数快速得到2^k,这里用到了位运算,&是位运算符,不细说。

    int lowbit(int t) 
    {
    return t&(-t);
    }

    该函数返回该树状数组节点的管辖范围,如C[6],带入6返回值为2,C[6]=A[5]+A[6];

    更新树状数组函数upDate

    void upDate(int x,int num) //修改树状数组
    {
      while(x<=N)
      {
        b[x]+=num;
        x+=lowbit(x);
      }
    }

    x是要更新的节点,N为树状数组长度,num为修改的值,本函数将树状数组C[]中所有包含A[x]的节点更新。本函数可用于数组的修改,也可用于数组的建立。

    求和函数getSum

    int getSum(int x) //求0-x的和
    {
      int s=0;
      while(x>0)
      {
        s+=b[x];
        x-=lowbit(x);
      }
      return s;
    }

     如果要求数组m-n段的和可用getSum(n)-getSum(m);

    有了以上三个函数最基本的树状数组就成型了。。

    再深入。。。。。

    我也无能为力了。。。

  • 相关阅读:
    【BZOJ】1726 [Usaco2006 Nov]Roadblocks第二短路
    【BZOJ】1666 [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏
    【BZOJ】1699 [Usaco2007 Jan]Balanced Lineup排队
    【BZOJ】1477 青蛙的约会
    【BZOJ】1385 [Baltic2000]Division expression
    【算法】数学
    【NOIP】提高组2012 同余方程
    【BZOJ】1096 [ZJOI2007]仓库建设
    【算法】动态规划
    【LA】5135 Mining Your Own Business
  • 原文地址:https://www.cnblogs.com/wuyoucao/p/4814200.html
Copyright © 2011-2022 走看看