zoukankan      html  css  js  c++  java
  • OpenCVPython系列之对极几何实践

    OpenCV中的对极几何

    在上个教程中我们已经简述了对极几何的一些理论知识,本次我们来使用OpenCV中的一些函数来进行实战,为了得到基础矩阵我们应该在两幅图像中找到尽量多的匹配点。我们可以使用 SIFT 描述符,FLANN 匹配器和比值检测。

    我们使用示例图片:

    image.png

    image.png

    先看代码:

    import numpy as np
    import cv2 as cv
    from matplotlib import pyplot as plt
     
     
    img1 = cv.imread('myleft.jpg', 0)  # queryimage # left image
    img2 = cv.imread('myright.jpg', 0)  # trainimage # right image
    sift = cv.xfeatures2d.SIFT_create()
    # find the keypoints and descriptors with SIFT
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    # FLANN parameters
    FLANN_INDEX_KDTREE = 1
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)
    flann = cv.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)
    good = []
    pts1 = []
    pts2 = []
    # ratio test as per Lowe's paper
    for i, (m, n) in enumerate(matches):
        if m.distance < 0.8*n.distance:
            good.append(m)
            pts2.append(kp2[m.trainIdx].pt)
            pts1.append(kp1[m.queryIdx].pt)

    现在得到了一个匹配点列表,我们就可以使用它来计算基础矩阵了。

    retval, mask=cv.findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, mask)

    · points1从第一张图片开始的N个点的数组。点坐标应该是浮点数(单精度或双精度)。

    · points2与点1大小和格式相同的第二图像点的数组。

    · method计算基本矩阵的方法。

    · cv2.FM_7POINT for a 7-point algorithm. N=7

    · cv2.FM_8POINT for an 8-point algorithm. N≥8

    · cv2.FM_RANSAC (默认) for the RANSAC algorithm. N≥8

    · cv2.FM_LMEDS for the LMedS algorithm. N≥8

    · ransacReprojThreshold仅用于RANSAC方法的参数,默认3。它是一个点到极线的最大距离(以像素为单位),超过这个点就被认为是一个离群点,不用于计算最终的基本矩阵。根据点定位、图像分辨率和图像噪声的准确性,可以将其设置为1-3左右。

    · confidence仅用于RANSAC和LMedS方法的参数,默认0.99。它指定了一个理想的置信水平(概率),即估计矩阵是正确的。

    · mask输出

    pts1 = np.int32(pts1)

    pts2 = np.int32(pts2)

    F, mask = cv.findFundamentalMat(pts1, pts2, cv.FM_LMEDS)

    # We select only inlier points

    pts1 = pts1[mask.ravel() == 1]

    pts2 = pts2[mask.ravel() == 1]

    下一步我们要找到极线。我们会得到一个包含很多线的数组。所以我们要 定义一个新的函数将这些线绘制到图像中。

    def drawlines(img1, img2, lines, pts1, pts2):
        ''' img1 - image on which we draw the epilines for the points in img2
            lines - corresponding epilines '''
        r, c = img1.shape
        img1 = cv.cvtColor(img1, cv.COLOR_GRAY2BGR)
        img2 = cv.cvtColor(img2, cv.COLOR_GRAY2BGR)
        for r, pt1, pt2 in zip(lines, pts1, pts2):
            color = tuple(np.random.randint(0, 255, 3).tolist())
            x0, y0 = map(int, [0, -r[2]/r[1]])
            x1, y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
            img1 = cv.line(img1, (x0, y0), (x1, y1), color, 1)
            img1 = cv.circle(img1, tuple(pt1), 5, color, -1)
            img2 = cv.circle(img2, tuple(pt2), 5, color, -1)
        return img1, img2

    现在我们两幅图像中计算并绘制极线。

    lines = cv.computeCorrespondEpilines(points, whichImage, F, lines)

    · points输入点。类型为CV_32FC2N×1或1×N矩阵。

    · whichImage包含点的图像(1或2)的索引。

    · F基本矩阵,可使用findFundamentalMat或stereoRectify 进行估计。

    · lines对应于另一幅图像中点的极线的输出向量(a,b,c)表示直线ax+by+c=0。

    # Find epilines corresponding to points in right image (second image) and
    # drawing its lines on left image
    lines1 = cv.computeCorrespondEpilines(pts2.reshape(-1, 1, 2), 2, F)
    lines1 = lines1.reshape(-1, 3)
    img5, img6 = drawlines(img1, img2, lines1, pts1, pts2)
    # Find epilines corresponding to points in left image (first image) and
    # drawing its lines on right image
    lines2 = cv.computeCorrespondEpilines(pts1.reshape(-1, 1, 2), 1, F)
    lines2 = lines2.reshape(-1, 3)
    img3, img4 = drawlines(img2, img1, lines2, pts2, pts1)
    plt.subplot(121), plt.imshow(img5)
    plt.subplot(122), plt.imshow(img3)
    plt.show()

    最终整个程序:

    import numpy as np
    import cv2 as cv
    from matplotlib import pyplot as plt
     
     
    def drawlines(img1, img2, lines, pts1, pts2):
        ''' img1 - image on which we draw the epilines for the points in img2
            lines - corresponding epilines '''
        r, c = img1.shape
        img1 = cv.cvtColor(img1, cv.COLOR_GRAY2BGR)
        img2 = cv.cvtColor(img2, cv.COLOR_GRAY2BGR)
        for r, pt1, pt2 in zip(lines, pts1, pts2):
            color = tuple(np.random.randint(0, 255, 3).tolist())
            x0, y0 = map(int, [0, -r[2]/r[1]])
            x1, y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
            img1 = cv.line(img1, (x0, y0), (x1, y1), color, 1)
            img1 = cv.circle(img1, tuple(pt1), 5, color, -1)
            img2 = cv.circle(img2, tuple(pt2), 5, color, -1)
        return img1, img2
     
     
    img1 = cv.imread('myleft.jpg', 0)  # queryimage # left image
    img2 = cv.imread('myright.jpg', 0)  # trainimage # right image
    sift = cv.xfeatures2d.SIFT_create()
    # find the keypoints and descriptors with SIFT
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    # FLANN parameters
    FLANN_INDEX_KDTREE = 1
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)
    flann = cv.FlannBasedMatcher(index_params, search_params)
    matches = flann.knnMatch(des1, des2, k=2)
    good = []
    pts1 = []
    pts2 = []
    # ratio test as per Lowe's paper
    for i, (m, n) in enumerate(matches):
        if m.distance < 0.8*n.distance:
            good.append(m)
            pts2.append(kp2[m.trainIdx].pt)
            pts1.append(kp1[m.queryIdx].pt)
     
    pts1 = np.int32(pts1)
    pts2 = np.int32(pts2)
    F, mask = cv.findFundamentalMat(pts1, pts2, cv.FM_LMEDS)
    # We select only inlier points
    pts1 = pts1[mask.ravel() == 1]
    pts2 = pts2[mask.ravel() == 1]
     
    # Find epilines corresponding to points in right image (second image) and
    # drawing its lines on left image
    lines1 = cv.computeCorrespondEpilines(pts2.reshape(-1, 1, 2), 2, F)
    lines1 = lines1.reshape(-1, 3)
    img5, img6 = drawlines(img1, img2, lines1, pts1, pts2)
    # Find epilines corresponding to points in left image (first image) and
    # drawing its lines on right image
    lines2 = cv.computeCorrespondEpilines(pts1.reshape(-1, 1, 2), 1, F)
    lines2 = lines2.reshape(-1, 3)
    img3, img4 = drawlines(img2, img1, lines2, pts2, pts1)
    plt.subplot(121), plt.imshow(img5)
    plt.subplot(122), plt.imshow(img3)
    plt.show()

    结果:

    image.png

    我们可以在左侧图像中看到所有Epilines都在右侧图像的一点处收敛。那个汇合点就是极点。

    天道酬勤 循序渐进 技压群雄
  • 相关阅读:
    SAP-MM采购视图-利润中心在“工厂数据/存储2”
    SAP-物料主数据维护之(通用名称/商用名称维护)
    SAP BP维护客商主数据之(交货与付款条件)定义
    SAP MM01创建物料时配置价格
    SAP SD后台配置清单
    SAP- 物料主数据之多工厂设置
    SAP如何查询表名及字段
    SAP学习之:F-65制作财务客户收款凭证
    SAP中创建采购信息记录 (ME11)
    SAP DEV-Q-PRO系统环境默认配置规则
  • 原文地址:https://www.cnblogs.com/wuyuan2011woaini/p/15660155.html
Copyright © 2011-2022 走看看