zoukankan      html  css  js  c++  java
  • pycharts基本图表

    基本图表

    饼图
    # 虚假数据
    cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
    data = [123, 153, 89, 107, 98, 23]
    
    pie = (Pie()
           .add('', [list(z) for z in zip(cate, data)])
           )
    
    pie.render_notebook()


    1

    漏斗图
    # 虚假数据
    cate = ['访问', '注册', '加入购物车', '提交订单', '付款成功']
    data = [30398, 15230, 10045, 3109, 1698]
    
    funnel = (Funnel()
              .add("", [list(z) for z in zip(cate, data)])
              )
    
    funnel.render_notebook()

    1

    仪表盘
    gauge = (Gauge()
              .add("", [('转化率',34)])
              )
    
    gauge.render_notebook()

    1

    水球图
    liquid = (Liquid()
              .add("", [0.52, 0.44])
              )
    
    liquid.render_notebook()

    canvas

    日历图


    import math
    
    # 虚假数据
    begin = datetime.date(2019, 1, 1)
    end = datetime.date(2019, 12, 31)
    data = [[str(begin + datetime.timedelta(days=i)), abs(math.cos(i/100))* random.randint(1000, 1200)]
            for i in range((end - begin).days + 1)]
            
    calendar = (
            Calendar()
            .add("", data, calendar_opts=opts.CalendarOpts(range_="2019"))
        )
    
    calendar.render_notebook()


    canvas

    关系图
    nodes = [
        {"name": "结点1", "symbolSize": 1},
        {"name": "结点2", "symbolSize": 2},
        {"name": "结点3", "symbolSize": 3},
        {"name": "结点4", "symbolSize": 4},
        {"name": "结点5", "symbolSize": 5},
        {"name": "结点6", "symbolSize": 6},
        {"name": "结点7", "symbolSize": 7},
        {"name": "结点8", "symbolSize": 8},
    ]
    links = [{'source': '结点1', 'target': '结点2'},
             {'source': '结点1', 'target': '结点3'},
             {'source': '结点1', 'target': '结点4'},
             {'source': '结点2', 'target': '结点1'},
             {'source': '结点3', 'target': '结点4'},
             {'source': '结点3', 'target': '结点5'},
             {'source': '结点3', 'target': '结点6'},
             {'source': '结点4', 'target': '结点1'},
             {'source': '结点4', 'target': '结点2'},
             {'source': '结点4', 'target': '结点7'},
             {'source': '结点4', 'target': '结点8'},
             {'source': '结点5', 'target': '结点1'},
             {'source': '结点5', 'target': '结点4'},
             {'source': '结点5', 'target': '结点6'},
             {'source': '结点5', 'target': '结点7'},
             {'source': '结点5', 'target': '结点8'},
             {'source': '结点6', 'target': '结点1'},
             {'source': '结点6', 'target': '结点7'},
             {'source': '结点6', 'target': '结点8'},
             {'source': '结点7', 'target': '结点1'},
             {'source': '结点7', 'target': '结点2'},
             {'source': '结点7', 'target': '结点8'},
             {'source': '结点8', 'target': '结点1'},
             {'source': '结点8', 'target': '结点2'},
             {'source': '结点8', 'target': '结点3'},
             ]
    
    graph = (
        Graph()
        .add("", nodes, links)
    )
    
    graph.render_notebook()

    canvas

    平行坐标系
    # 虚假数据
    data = [
        ['一班', 78, 91, 123, 78, 82, 67, "优秀"],
        ['二班', 89, 101, 127, 88, 86, 75, "良好"],
        ['三班', 86, 93, 101, 84, 90, 73, "合格"],
    ]
    
    parallel = (
        Parallel()
        .add_schema(
            [
                opts.ParallelAxisOpts(
                    dim=0,
                    name="班级",
                    type_="category",
                    data=["一班", "二班", "三班"],
                ),
                opts.ParallelAxisOpts(dim=1, name="英语"),
                opts.ParallelAxisOpts(dim=2, name="数学"),
                opts.ParallelAxisOpts(dim=3, name="语文"),
                opts.ParallelAxisOpts(dim=4, name="物理"),
                opts.ParallelAxisOpts(dim=5, name="生物"),
                opts.ParallelAxisOpts(dim=6, name="化学"),
                opts.ParallelAxisOpts(
                    dim=7,
                    name="评级",
                    type_="category",
                    data=["优秀", "良好", "合格"],
                ),
            ]
        )
        .add("", data)
    )
    
    parallel.render_notebook()

    canvas

    极坐标系


    # 虚假数据
    cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
    data = [123, 153, 89, 107, 98, 23]
    
    
    polar = (
        Polar()
        .add_schema(
            radiusaxis_opts=opts.RadiusAxisOpts(data=cate, type_="category"),
        )
        .add("", data, type_='bar')
    )
    
    polar.render_notebook()
    
    canvas
    雷达图
    # 虚假数据
    data = [
        [78, 91, 123, 78, 82, 67],
        [89, 101, 127, 88, 86, 75],
        [86, 93, 101, 84, 90, 73],
    ]
    
    
    radar = (Radar()
             .add_schema(schema=[
                 opts.RadarIndicatorItem(name="语文", max_=150),
                 opts.RadarIndicatorItem(name="数学", max_=150),
                 opts.RadarIndicatorItem(name="英语", max_=150),
                 opts.RadarIndicatorItem(name="物理", max_=100),
                 opts.RadarIndicatorItem(name="生物", max_=100),
                 opts.RadarIndicatorItem(name="化学", max_=100),
             ]
    )
        .add('', data)
    )
    radar.render_notebook()


    canvas

    旭日图
    # 虚假数据
    data = [
        {"name": "湖南",
         "children": [
                 {"name": "长沙",
                  "children": [
                      {"name": "雨花区", "value": 55},
                      {"name": "岳麓区", "value": 34},
                      {"name": "天心区", "value": 144},
                  ]},
                 {"name": "常德",
                  "children": [
                          {"name": "武陵区", "value": 156},
                          {"name": "鼎城区", "value": 134},
                  ]},
                 {"name": "湘潭", "value": 87},
                 {"name": "株洲", "value": 23},
         ],
         },
        {"name": "湖北",
         "children": [
                 {"name": "武汉",
                  "children": [
                      {"name": "洪山区", "value": 55},
                      {"name": "东湖高新", "value": 78},
                      {"name": "江夏区", "value": 34},
                  ]},
                 {"name": "鄂州", "value": 67},
                 {"name": "襄阳", "value": 34},
         ],
         },
        {"name": "北京", "value": 235}
    ]
    
    
    sunburst = (Sunburst()
                .add("", data_pair=data)
                )
    
    sunburst.render_notebook()
    
    

    1

    桑基图
    # 虚假数据
    nodes = [
        {"name": "访问"},
        {"name": "注册"},
        {"name": "付费"},
    ]
    
    links = [
        {"source": "访问", "target": "注册", "value": 50},
        {"source": "注册", "target": "付费", "value": 30},
    ]
    
    
    sankey = (
        Sankey()
        .add("", nodes, links)
    )
    
    sankey.render_notebook()

    canvas

    河流图
    # 虚假数据
    cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
    date_list = ["2020/4/{}".format(i + 1) for i in range(30)]
    
    data = [[day, random.randint(10, 50), c] for day in date_list for c in cate]
    
    
    river = (
        ThemeRiver()
        .add(
            series_name=cate,
            data=data,
            singleaxis_opts=opts.SingleAxisOpts(type_="time")
        )
    )
    
    river.render_notebook()

    canvas

    词云图
    words = [
        ("hey", 230),
        ("jude", 124),
        ("dont", 436),
        ("make", 255),
        ("it", 247),
        ("bad", 244),
        ("Take", 138),
        ("a sad song", 184),
        ("and", 12),
        ("make", 165),
        ("it", 247),
        ("better", 182),
        ("remember", 255),
        ("to", 150),
        ("let", 162),
        ("her", 266),
        ("into", 60),
        ("your", 82),
        ("heart", 173),
        ("then", 365),
        ("you", 360),
        ("can", 282),
        ("start", 273),
        ("make", 265),
    ]
    
    
    wc = (
        WordCloud()
        .add("", words)
    )
    
    wc.render_notebook()

    canvas

    表格
    from pyecharts.components import Table
    
    
    table = Table()
    
    headers = ["City name", "Area", "Population", "Annual Rainfall"]
    rows = [
        ["Brisbane", 5905, 1857594, 1146.4],
        ["Adelaide", 1295, 1158259, 600.5],
        ["Darwin", 112, 120900, 1714.7],
        ["Hobart", 1357, 205556, 619.5],
        ["Sydney", 2058, 4336374, 1214.8],
        ["Melbourne", 1566, 3806092, 646.9],
        ["Perth", 5386, 1554769, 869.4],
    ]
    table.add(headers, rows)
    
    table.render_notebook()
    
    

    image

    天道酬勤 循序渐进 技压群雄
  • 相关阅读:
    P1964 【mc生存】卖东西
    到达型01背包---P1877 [HAOI2012]音量调节
    组合数学---P1358 扑克牌
    分组背包---P1757 通天之分组背包
    01背包---P2392 kkksc03考前临时抱佛脚
    背包DP 方案数
    完全背包---P1679 神奇的四次方数
    01-背包---P2663 越越的组队
    17、排序算法-希尔排序
    16、排序算法-插入排序
  • 原文地址:https://www.cnblogs.com/wuyuan2011woaini/p/15783809.html
Copyright © 2011-2022 走看看